

SYLLABUS

(With effect from 2023 -24)

(ಶೈಕ್ಷಣಿಕ ವರ್ಷ 2023-24)

Bachelor Degree In Mechanical Engineering

V & VI Semester

Out Come Based Education With Choice Based Credit System

[National Education Policy Scheme]

P.E.S. College of Engineering, Mandya - 571 401, Karnataka

[An Autonomous Institution affiliated to VTU, Belagavi, Grant – in – Aid Institution (Government of Karnataka), Accredited by NBA (All UG Programs), NAAC and Approved by AICTE, New Delhi]

ಪಿ.ಇ.ಎಸ್. ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ

ಮಂಡ್ಯ-571 401, ಕರ್ನಾಟಕ

(ವಿ.ಟಿ.ಯು, ಬೆಳಗಾವಿ ಅಡಿಯಲ್ಲಿನ ಸ್ವಾಯತ್ತ ಸಂಸ್ಥೆ)

Ph : 08232- 220043, Fax : 08232 - 222075, Web : <u>www.pescemandya.org</u>

VISION

"PESCE shall be a leading institution imparting quality Engineering and Management education developing creative and socially responsible professionals."

MISSION

- Provide state of the art infrastructure, motivate the faculty to be proficient in their field of specialization and adopt best teaching-learning practices.
- Impart engineering and managerial skills through competent and committed faculty using outcome based educational curriculum.
- Inculcate professional ethics, leadership qualities and entrepreneurial skills to meet the societal needs.
- *Promote research, product development and industry-institution interaction.*

QUALITY POLICY

Highly committed in providing quality, concurrent technical education and continuously striving to meet expectations of stake holders.

CORE VALUES

Professionalism Empathy Synergy Commitment Ethics

The Department of Mechanical Engineering was established in the year 1962 during the origination of the institute. The department was granted academic autonomy in the year 2009. The department presently offers B.E in Mechanical Engineering, M Tech in Machine Design, M.Sc., (Engg.) by research and research leading to Ph.D. The present intake capacity of the department is 120 for BE, 24 for M Tech Machine Design. The department has a faculty-student ratio of 1:20 for UG courses and 1:12 for PG courses. The department has well established laboratories to meet the academic requirements of UG and PG programmes and a skilled technical faculty to train the students. The department has its own library which has a collection of about 4600 reference books. The department is accredited with NBA for 3Years in 2019. The department regularly organizes industrial visits, technical talk by experts from industries and institutes in contemporary areas to bridge the gap between syllabi and current corporate developments. The students are encouraged to undergo industrial training as well as to take up industry oriented projects during their academic course. Mechanical Engineering Association (MEA), formed by the students and faculty of the department regularly organizes co-curricular and extracurricular activities for the students.

Department Vision

"Be a department well recognized for its ability to develop competent mechanical engineers capable of working in global environment"

Department Mission

The Mission of the Department of Mechanical Engineering is to:

- Provide quality education by competent faculty.
- Provide adequate infrastructure and learning ambience for the development of essential technical skills.
- Inculcate a sense of higher education and research orientation.
- Foster industry interaction.

Program Educational Objectives (PEOs)

The Department of Mechanical Engineering has formulated the following programme educational objectives for the under-graduate program in Mechanical Engineering:

The Mechanical Engineering graduates will be able to:

PEO1: Use the fundamentals of basic science, mathematics and mechanical engineering, to pursue their career as engineers as well as to lead and manage teams in global organizations.

PEO2: Pursue advanced education, research and development and engage in the process of life-long learning.

PEO3: Become entrepreneurs in a responsible, professional and ethical manner to serve the society.

Program Specific Outcomes (PSOs)

Engineering graduates should be able to:

PSO1: Apply conceptual knowledge with practical engagement that has real life problems by integrating different domains of mechanical engineering.

PSO2: Utilize the modern tools and emerging technologies with technical skills to design, develop and analyse mechanical systems through multidisciplinary approach.

Program Outcomes (POs)

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	Bachelor of Engineering (V – Semester)											
SI.			Teaching		Hrs / Week				Exa	aminat Marks	ion	
No.	Course Code	Course Title	Department L T		T*	Р	PJ	Credits	CIE	SEE	Total	
1	P21ME501	Management, Entrepreneurship and Professional Ethics	ME	3	-	-	-	3	50	50	100	
2	P21ME502	Design of Machine Elements-I	ME	3	-	-	-	3	50	50	100	
3	P21ME503X	Professional Elective Course - I	ME	3	-	-	-	3	50	50	100	
4	P21ME504	Theory of Machine- I	ME	3	-	2	-	4	50	50	100	
5	P21MEO505X	Open Elective – I	ME	3	-	-	-	3	50	50	100	
6	P21MEL506	Energy Conversion Laboratory	ME	-	-	2	-	1	50	50	100	
7	P21INT507	Internship - II	ME	-	-	-	-	2	-	100	100	
8	P21HSMC508	Employability Enhancement Skills – V	HSMC	1	-	-	-	1	50	50	100	
9	P21UHV509	Social Connect and Responsibility	ME	1	-	-	-	1	100	-	100	
	Total							21				

Professiona	l Elective Course-I (P21ME503X)	Open Elective–I (P21MEO505X)						
Course Code	Course Title	Course Title						
P21ME5031	Theory of Elasticity	P21MEO5051	Mechatronics and Microprocessor					
P21ME5032	Non Traditional Machining	P21MEO5052	Robotics and Automation					
P21ME5033	Aircraft and Rocket Propulsion	P21MEO5053	Experimental Stress Analysis					
P21ME5034	Design of Experiments	P21MEO5054	Fundamentals of Thermal Sciences					

	Bachelor of Engineering (VI –Semester)												
SI.	Course Code	Course Title	Teaching		Hrs / Week		Hrs / Week		Hrs / Week		Exa	aminat Marks	ion
110.			Department	L	T *	Р	PJ		CIE	SEE	Total		
1	P21ME601	Design of Machine Elements-II	ME	3	-	-	-	3	50	50	100		
2	P21ME602X	Professional Elective Course-II	ME	3	-	-	-	3	50	50	100		
3	P21ME603X	Professional Elective Course–III	ME	3	-	-	-	3	50	50	100		
4	P21ME604	Heat and Mass Transfer	ME	3	-	2	-	4	50	50	100		
5	P21MEO605X	Open Elective – II	ME	3	-	-	-	3	50	50	100		
6	P21MEL606	Computer Aided Modeling and Analysis Lab	ME	-	-	2	-	1	50	50	100		
7	P21MEMP607	Mini – Project	ME	-	-	2	2	2	50	50	100		
8	P21HSMC608	Employability Enhancement Skills - VI	HSMC	1	-	-	-	1	50	50	100		
9	P21UHV609	Universal Human Values and Professional Ethics	ME	1	-	-	-	1	50	50	100		
	Total 21												

Professiona (P2	alElectiveCourse–II 21ME602X)	Professional (P2	Elective Course–III 1ME603X)	Ol (1	pen Elective – II P21MEO605X)
Course Code	Course Title	Course Code	Course Title	Course Code	Course Title
P21ME6021	Computer Integrated Manufacturing	P21ME6031	Advanced Engineering Materials	P21MEO6051	Alternate Fuels, Energy Conversion and Conservation
P21ME6022	Finite Element Methods	P21ME6032	Electric and Hybrid Vehicles	P21MEO6052	Introduction to Finite Element Methods
P21ME6023	Heating, Ventilation and Air Conditioning	P21ME6033	Control Engineering	P21MEO6053	Maintenance Engineering
P21ME6024	Materials Selection and Failure Analysis	P21ME6034	Production Management	P21MEO6054	Operations Research
		P21ME6035	Theory of Plasticity		

P.E.S. College of Engineering, Mandya

Department of Mechanical Engineering

MANAGEMENT, ENTREPRENEURSHIP AND PROFESSIONAL ETHICS

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER - V

Course Code: P21ME501		L-T-P: 3-0-0	Credits: 03
Contact Period-Lecture: 40 Hrs.	Exam: 3 Hrs.	Weightage: CIE: 50 %;	SEE: 50%

Course Learning Objectives:

The objectives of this course are to,

Enable the students to understand the basic concepts of Management, Entrepreneurship, and Organization. Provide complete insight regarding the various organizational behavior, professional ethics, personality traits and stress management.

Course Content UNIT-I

Introduction: Management -Introduction, Meaning, Evolution of Management Thought, Nature, Objectives, Importance, Difference between Administration and Management, Levels of Management, Functions of Management, **Planning-** Definition, Features, Importance of planning, **Organization** structure-Definitions, Importance, Principles, Organization Chart, Span of Control, Centralization and Decentralization of Authority. **Directing-**Definitions, Importance, Principles of Directing, **Controlling-**Definitions, Need of Controlling, Types of Control, Control Techniques.

Self-Study Component: Steps in the Controlling Process.

UNIT-II

Entrepreneurship: Meaning of Entrepreneur, Evolution of Entrepreneur concept, Characteristics of Entrepreneur, Functions of Entrepreneur, Types of entrepreneur, Stages in entrepreneurial process, Role of entrepreneurs in economic development of country, barriers to entrepreneurship. **Business Organizations and Business Environment:** Introduction to various form of business organization, sole proprietorship, partnership, corporations, Limited Liability, company, Liberalization, Privatization and Globalization in India. Intellectual Property Rights (IPR), Types of IPRs.

8 Hrs

8 Hrs

Self-Study Component: Development of Entrepreneurship in India. Support for MSME, Women empowerment by state and central financial intuitions.

UNIT-III

Organizational Behavior: Introduction, Definitions, Nature, Goals, Importance, Approaches to Organizational, **Attitude-** Meaning, Definition, Types, Components, Attitudes and Behaviour, Changing Attitudes in the Workplace; **Perception-**Perception, Perceptual Process, Factors Influencing Perception; **Personality-**Definitions, Factors Influencing Personality, Personality Traits, Personality Tools and Tests; **Motivation-**Definitions, Process of Motivation (Cycle of Motivation), Nature, Importance, Types, X and Y theories of Motivation.

8 Hrs

Self-Study Component: Decision-making, steps in Decision-making.

UNIT-IV

Organizational Culture- Definitions of Organizational Culture, Strong v/s Weak Culture, Characteristics, Types, Levels, Dimensions, Creating Organizational Culture, Changing Organizational Culture. **Group Dynamics-** Meaning of Group, Group Characteristics, Classification of Groups, **Group Behavior**, Impact of Group on Individual's Behaviour, Impact of External Factors on Group Behaviour. **Teamwork-** Nature of Teams, Team Characteristics, Teams Versus Groups, Teamwork, Processes of Teamwork, Creating Effective Teams.

8 Hrs

Self-Study Component: Types of Teams and Reasons for Team Failure, Concepts of Leadership.

UNIT-V

Change and Stress Management: Change- Nature, Characteristics, Process, Forces Responsible for Change in Organizations, Resistance to Change, **Stress Management-**Definitions, Understanding Stress, Relation between Stress and Performance, Level, Signs and Symptoms of Stress, Types of Stress, Causes of Stress, Managing Stress.

8 Hrs

Self-Study Component: Managing Resistance to Change, Institutional support and government schemes. Text Books:

P C Tripathi and P N Reddy, "**Principles of management**", Tata McGraw Hill, 5th edition, 2015. ISBN: 978-0-07-133333-9.

Chandrani Singh and Aditi Khatri, "**Principles and Practices of Management and Organisational Behaviour**", Sage Publication, 1st edition, 2016. ISBN: 9789351508953.

Reference Books:

OP Khanna, "Industrial Engineering and Management", Dhanpath rai Publications, 4th edition, 2018. ISBN: 978-8189928353

Paul Henry and Kenneth H. Blanchard, "Management of Organizational Behavior" Prentice Hall of India, 3rd edition, 1996. ISBN: 0-13-548875-3

T.R. Banga and S.C. Sharma, "**Industrial Engineering and Management**", Khanna Publications, 17th edition, 2017. ISBN: 978-81-933284-60

Stephen P Robbins and Timothy, "Organizational Behaviour", Pearson Publication, 17th edition, 2016. ISBN: 978-1-292-14630-0

e- Resources:

https://www.youtube.com/watch?v=TsZukmeaewc&list=PLF1DBCAC25C2BC963

https://www.youtube.com/watch?v=UEXrsZ3vkx0&list=PLF1DBCAC25C2BC963&index=4

https://www.youtube.com/watch?v=PHDHITqX5Bg&list=PLF1DBCAC25C2BC963&index=10 https://www.youtube.com/watch?v=ICYqc5 mJ5g

https://www.youtube.com/watch?v=CRpqsuM3600&list=PLyqSpQzTE6M8SdzVBPSXRz2K0715Dn xXx

https://www.youtube.com/watch?v=uyeISA692gw

https://www.youtube.com/watch?v=JPMrR6si5xA

urse Outcomes: At the end of the course, students will be able to,

Apply fundamentals of Industrial Management, Entrepreneurship and Professional Ethics, concepts for stress management.

Apply the knowledge in Development of Entrepreneurship, structurization of organization.

Analyze appropriate Organizational Culture and Group Behavior.

Make use of Organization Behaviour and Stress Management as an individual or as a team member for effective communication and working environment.

	Course Articulation Matrix														
Course	a Autoomog			P	rog	gra	m (Ou	tco	m	es			PS	50
Cours	e Outcomes	1 2 3 4 5 6 7 8 9 10 11 1				12	1	2							
	Apply fundamentals of Industrial Management,														
CO1	Entrepreneurship and Professional Ethics, concepts for	3							2						
	stress management.														
CO2	Apply the knowledge in Development of	3													
	Entrepreneurship, structurization of organization.	5													
CO3	Analyze appropriate Organizational Culture and Group		2									1			
	Behavior.		3									1			
CO4	Make use of Organization Behavior and Stress														
	Management as an individual or as a team member for		3						1	1					
	effective communication.														

SEE- Course Assessment Plan												
COs		Total Marka	Weightage									
	Unit I	Unit II	Unit III	Unit IV	Unit V	1 otar Marks	weightage					
CO1 2+9 2+9 22												
CO2			2+9	2+9	2+9	33	33%					
CO3	9	9				18	18%					
CO4			9	9	9	27	27%					
	20	20	20	20	20	100	100%					
	Application = 80%, Analysis = 20%											

	GN OF MACHIN	E ELEMENTS-I	
[As per Choice	Based Credit System SEMESTER	m (CBCS) & OBE Scheme] $\mathbf{R} = \mathbf{V}$	
Course Code: P21ME502	SEMESTER	L-T-P: 3-0-0	Credits: 03
Contact Period-Lecture: 40 Hrs.	Exam: 3 Hrs.	Weightage: CIE: 50 %;	SEE: 50%
Course Learning Objectives:	•	•	
The objectives of this course are to,			
Understand the basic concepts of M	achine elements ar	nd its functions.	
Understand basic procedures in mac	chine design.		
Apply the standard material property	ies and codes in de	signing machine elements.	
Design some of the commonly used	machine elements		
	Course Cor	ntent	
	UNIT-J	L Line suine Meteriale desirer s	Desi
sasic design concept: Introduction, (designation of Eng	gineering Materials, design of	considerations, Basic
vimple machine members subjected	to static loading	(including accentric load on	or of safety, design of
Simple machine members subjected (um normal stress	theory Maximum shear stre	s theory Distortion
energy theory and simple numerical	Stress concentrati	ion: Stress concentration fact	tor design of simple
elements with stress raisers.			tor, design or simple
			8 Hr:
Self study component: Maximum stra	in theory [St.Vena	nt's theory] of failure and brid	ttle/ductile fracture.
	UNIT-I	I	
Design against fatigue load: Introdu	ction, types of flu	ctuating stresses, Low cycle	fatigue, High cycle
atigue, Rotating beam bending test,	S-N Diagram, end	lurance limit, endurance limit	it modifying factors
oad, size and surface factors, Stress	s concentration ef	fects; notch sensitivity, des	ign for infinite life
combined steady and variable stress,	Soderberg and C	Goodman relationship, stress	es due to combined
oading. Impact loading: Impact stress	ses due to axial loa	ld.	0.11
Salf study component. Impact stresses	s due to bending lo	ad	ð Hr
sen study component. Impact suesses	UNIT-I	II	
Design of shafts: Introduction, shafts	and axles, transm	hission shafts subjected to co	mbined bending and
wisting (solid shafts only) based on st	rength and torsiona	al rigidity. ASME code for sh	aft design. Design o
Muff coupling and rigid flange couplin	ıg.		8 8
	0		8 Hrs
Self study component: Design against	t lateral rigidity.		
	UNIT-I	V	
Threaded joints: Introduction, Stress	ses in threaded fa	steners due to static loading	g, elastic analysis of
polted joints, initial tension in bolts,	eccentrically loade	ed threaded joints. Power so	rews - Introduction
Гуреs of screw threads, Design of Pow	ver Screws, efficien	ncy, self-locking and over hau	ling.
			8 Hrs
Self study component: Differential an	d compound screw	/S.	
Divoted joints Introduction method	UNII-V La of rivising Type	V	mag of mixeted joints
Failures of riveted joints, joint officier	is of fiveting, Type	es of fivels, fivel materials, ty	pes of fiveled joints
velded joints, design of welded joints ((butt joints fillet w	velde)	introduction, types of
werden joints, design of werden joints ((butt joints, fillet w	(103).	8 Hrs
Self study component: Diamond or Lo	ozenge joint.		0 111
	6 J **		
Design data hand book:			
Design data hand book: K. Mahadevan and Balaveera Reddv.	"Design Data H	and Book", CBS Publicatio	n, 4 th Edition, 2013

Text Books:

V. B. Bhandari, "**Design of Machine Elements**" Tata McGraw Hill Publishing Company Ltd., New Delhi, 4th Edition 2017, ISBN: 9789339221126.

Robert L Norton, "Machine design", Pearson, 5th Edition, 2013. ISBN: 978-0133356717.

Reference Books:

Alfred S. Hall, A. R. Holowenko and H. G. Laughlin, "Schaum's Outlines of Machine Design", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2007. ISBN: 9780070634589.

Maleev, V. L., & Hartman, J. B, "Machine design", International Textbook Co., CBS, 5th edition, December 2011, ISBN-13:978-8123906379.

Richard G Budynas and Keith J Nisbett, "Shigley's Mechanical Engineering Design", McGraw Hill Education, 9th Edition, 2011, ISBN: 9780071077835.

e- Resources:

https://www.youtube.com/watch?v=ae1Tl2oJFuM

https://www.youtube.com/watch?v=uCoQlj5zH9Q

https://www.youtube.com/watch?v=6CLEWA2WNqM

https://www.youtube.com/watch?v=6fGnkzwBiKg

https://www.youtube.com/watch?v=3Hjmile-cNU&list=PL4K9r9dYCOoo-snj8qm-zNnHVjjn5E5Gk

https://www.youtube.com/watch?v=HutOKnuY9GA

https://www.youtube.com/watch?v=Z38Aq9ykUCM

https://www.youtube.com/watch?v=WoOb-2lutig

https://www.youtube.com/watch?v=9y93VZcxO0g

urse Outcomes: At the end of the course, students will be able to,

Apply the basic design concept in static, impact and fatigue loading conditions.

Analyse the static and fatigue failure theories and stresses induced in machine elements subjected to various loading conditions.

Design transmission elements, power screw and **analyse** for safe design.

Design the permanent and temporary joints for structural applications and analyse the same for safe design.

			Course Art	ticulation Mat	rix													
Course	o Oritoomoo						P	rog	gra	m	Ou	tco	m	es			PS	50
Cours	e Outcomes				1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	Apply the b fatigue loading	basic design c ng conditions.	concept in station	c, impact and	3												1	
CO2	CO2 Analyse the static and fatigue failure theories and stresses induced in machine elements subjected to various loading conditions.																1	
CO3 Design transmission elements, power screw and analyse for safe design.							3											
CO4	CO4 Design the permanent and temporary joints for structural applications and analyse the same for safe design.						2											2
			SEE- Course	e Assessment I	Pla	n												
COs		Ma	rks Distribution	n	Tatal Marka W													
	Unit I	Unit II	Unit III	Unit IV	U	J ni t	t V		ιοι		VIa	ILK	S	V	vei	gni	ag	e
CO1	2+9	2+9								2	2				2	2%		
CO2	9	9						18 18					8%					
CO3			2+9+9	9					29			29%		.9%	9%			
CO4				2+9	2	2+9	+9		31			31%						
	20 20 20 20					20)			1(00				1(00%	ó	
		Appli	cation = 22% , A	nalysis=18%,	Des	sigi	1=6	50%)									

	THEORY OF EL	ASTICITY	
[As per Choice	e Based Credit Syster	m (CBCS) & OBE Scheme]	
Course Code: P21ME5031	SENIESIEF	<u>L-T-P: 3-0-0</u>	Credits: 03
Contact Period-Lecture: 40 Hrs.	Exam: 3 Hrs.	Weightage: CIE: 50 %;	SEE: 50%
Course Learning Objective:		0 0 /	
The objective of this course is to under	rstand the mathema	tical and physical principles	of Elasticity, with
different solution strategies while appl	ying them to practi	cal cases.	-
	Course Con	ntent	
	UNIT-	ſ	
Stress Analysis: Introduction to the	general theory of	elasticity, assumptions and	applications of linear
elasticity. Stress tensors, state of stre	ess at a point, princ	cipal stresses, direction cosi	nes, stress invariants,
equilibrium equations, Construction of	f Mohr Circle for 2	D stress systems.	
			8 Hrs
Self-study component: Mohr's circle	for 3D stress system	m	
	UNIT-I	I	
Strain Analysis: Deformation, strain	n-displacement rela	tion, strain components, Th	e state of strain at a
point, principal strains, strain invariant	ts, Equations of Co	mpatibility for Strain, cubica	l dilation.
	0		8 Hrs
Self-study component: Mohr's circle	for strain system		
	UNIT-I	П	
Kirchhoff's law, Fundamental bound elasticity problems. General case of Pl from strain component to stress compo	lary value problem lane stress and Plan onents. Relation bet	ns, Inverse and Semi-inverse ne strain, transformation of co tween plane stress and plane	e method of solving ompatibility condition strain.
	7		8 Hrs
Self-study component: Theorem of v	ritual work	x 7	
2D Problems in Cartesian Coordina strain case. Investigation for simple b supported beam with uniform load using	ates: Airy stress fu eam problems. Ber ng polynomials.	v unction, stress function for p nding of narrow cantilever un	plane stress and plane nder end load, simply
			8 Hrs
Self-study component: Cauchy integr	ral theorem		
	UNIT-V	V	
Stress analysis in Axisymmetric bo and external pressures, shrink fit. To walled and multiple cells closed section	dy: Stresses in rot orsion of circular a	ating Thick-walled cylinder and elliptical bars, stress fur	subjected to internal action, torsion of thin
wanted and multiple cens closed secto			8 Hrs
Self-study component: Torsion of get	neral prismatic bar		0 1115
Text Books:			
S. P. Timoshenko and J N Goodie	r. "Theory of Elas	ticity". McGraw Hill Book	Company, 3 rd Edition.
2010. ISBN: 978-0070701229	,,		I
L S Srinath, "Advanced Mechani	ics of Solids", McG	araw Hill Book Company, 3 rd	¹ edition, 2009, ISBN:
978-0070139886	,	1 .	
Reference Books:			
Sadhu Singh and Khanna publis ISBN: 81-7409-060-6.	her, "Theory of E	Clasticity", Khanna Publishe	ers, 4 th edition, 2012.
Wang. C. T., " Applied Elasticity " T. G. Sitharam and Govindaraju,	", McGraw Hill Bo , " Applied Elastic	ok Company, 1963, ISBN: 9' ity ", Interline publishing, R	78-0070681255. evised edition, 2008,

ISBN: 81-7296-083-2.

Arthur P Boresi and Richard J Schmidt, "Advanced Mechanics of Materials", Wiley publisher, 6th edition, 2002, ISBN:978-8126522163.

e- Resources:

https://www.youtube.com/watch?v=DzyIEz3dKXQ&list=PLbRMhDVUMngcbhsZgRWuYCi2kKQwQ0A v1&index=8

https://www.youtube.com/watch?v=oXBiwkeRi2I&list=PLbRMhDVUMngcbhsZgRWuYCi2kKQwQ0Av 1&index=12

https://www.youtube.com/watch?v=o0jav8mpHGM

https://www.youtube.com/watch?v=qIhzc9L1HyA

https://www.youtube.com/watch?v=IQB0bJRCRxo&list=PL27C4A6AEA552F9E6&index=18

urse Outcomes: At the end of the course, students will be able to,

Apply the concept of stress strain in solving elasticity problems.

Apply the concepts of basic engineering mathematics in obtaining the expressions for stress strain in 2D system and in axisymmetric body.

Analyse the structural member like shafts, beams and cylinders subjected to torsion, bending and pressure respectively.

Analyse the 2D problems in Cartesian co-ordinate system.

			Course Art	iculation Mat	rix													
Corres	a Outaamaa						P	rog	gra	m	Ou	tco	m	es			PS	50
Cours	e Outcomes				1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	O1 Apply the concept of stress strain in solving elasticity problems.																	
CO2	O2 Apply the concepts of basic engineering mathematics in obtaining the expressions for stress strain in 2D system and in axisymmetric body.																	
CO3 Analyse the structural member like shafts, beams and cylinders subjected to torsion, bending and pressure respectively.																		
CO4	Analyse the 2	2D problems in	n Cartesian co-oi	dinate system.	1	3												
			SEE- Course	e Assessment I	Pla	n												
COs		Ma	rks Distribution	n	Total Marka V						Voi	aht	0.00	0				
	Unit I	Unit II	Unit III	Unit IV	U	J ni t	t V		l Ul	ai	lv1a	IK	8	v	ver	gni	ag	5
CO1	9+2									1	1					11		
CO2	CO2 9 2+9+9 2+9+9 49										49							
CO3				2+9	2	2+9	+9		31						31			
CO4				9					9			9			9			
	20 20 20 20					20)			1(00				1()0%	ó	
	Application=60%, Analysis=40%																	

P.E.S. College of Engineering, Mandya

Department of Mechanical Engineering

NON TRADITIONAL MACHINING

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER - V

Course Code: P21ME5032		L-T-P: 3:0:0	Credit: 03	
Contact Period: Lecture: 40 Hrs	Exam: 3 Hrs	Weightage : CIE-	50%, S	SEE-50%
Course Learning Objectives:				

The objectives of this course are to,

Understand the need and characteristics of nontraditional machining processes.

Prepare students for industries that require advanced machining capabilities, such as aerospace, defence, sports, automotive and medical device manufacturing.

				C	Course C	ontent					
					UNI	Ր-1					
-			 		-		1 0				

Introduction to Non-traditional Machining Processes: Need for nontraditional machining processes, process selection, classification, comparison between conventional and non-conventional machining process. Ultrasonic Machining: Working principle, mechanism of metal removal, tool feed mechanism, effect of process parameters, advantages, disadvantages and applications.

Self study component: Principle of micro machining and its application.

UNIT-2

Abrasive Jet Machining: Working principle, effect of process parameters, advantages, disadvantages and applications. Electric Discharge Machining (EDM): Working principle, mechanism of metal removal, basic EDM circuitry, spark erosion generators, analysis of relaxation type of circuit, material removal rate in relaxation circuits, critical resistance parameters in Ro circuit, die electric fluids, electrodes for spark erosion, surface finish, applications, pollution and safety issues.

08 Hrs

Self study component: Principle and applications of Abrasive water jet machining.

UNIT-3

Chemical Machining: Introduction, fundamental principle, maskants, etchants, process characteristics, advantages, disadvantages, applications and environmental issues. Electrochemical Machining (ECM): Introduction, working principle, chemistry of the ECM process, classification of ECM, effect of process parameters, determination of the metal removal rate, dynamics of ECM process, polarization, tool design, working principles of electro chemical grinding, electro chemical honing, electrochemical deburring.

08 Hrs

Self study component: Advantages, disadvantages and applications of electrochemical machining

UNIT-4

Laser Beam Machining: Introduction, principle of generation of laser, equipment and machining procedure, types of lasers, process characteristics, advantages, limitations and applications. Ion Beam Machining: Introduction, working principle, mechanism of metal removal, associated equipment, process characteristics, safety issue and applications.

UNIT-5

Plasma Arc machining: Introduction, working principle, mechanism of metals removal, process parameters, process characteristics, types of torches and applications. Electron Beam machining: Introduction, working principle, thermal & non thermal type, process characteristics, applications and safety issues.

Self study component: Safety precautions of plasma arc machining.

Self study component: Advantages and disadvantages of Ion beam Machining

08 Hrs

08 Hrs

08 Hrs

Text Books:

P. C. Pandey and H. S. Shan, "Modern Machining Process", Tata McGraw-Hill, 2000, ISBN: 9780070965539.

V K Jain "Advanced Machining Process", Allied Publisher Pvt. Ltd., 2007, ISBN:9788177642940, 8177642944.

Reference Books:

Hindustan Machine Tools, "Production Technology", Tata McGraw Hill., 2001, ISBN: 978-0070964433.

P.K.Mishra, "Non-Conventional Machining", The Institution of Engineers (India) Test book series, Narosa Publishing House, 2007, ISBN: 9788173191381.

e- Resources:

https://www.youtube.com/watch?v=XXm4Cf_N9CA

https://www.youtube.com/watch?v=fOc65syJvDM

https://www.youtube.com/watch?v=mgaukC25Hqk

https://www.google.com/search?q=non+traditional+machining+process

https://www.youtube.com/watch?v=J3fUPsBI-BU

https://www.google.com/search?q=nmt+process+selection+stanadrar+chart&rlz=1C1FKPE_enIN97 7IN977&oq=nmt+process+selection+stanadrar+chart&aqs=chrome..69i57j33i10i160l2.15511j0j15&sou rceid=chrome&ie=UTF-8

Course Outcomes:

At the end of the course, students will be able to,

Apply the principles, processes, and techniques of non-traditional machining methods.

Compare and selection of non-conventional machining processes for suitable applications.

Apply the concepts and techniques learned in the course to solve real-technical manufacturing problems and analyse the economic and environmental issues.

Analyse the process parameters and characteristics of operating specialized equipment's of non-traditional machines.

	Course	Art	icula	ation	Ma	trix									
					Р	rogr	am (Outo	come	es				PS	0
	Course Outcomes	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2
CO1	Apply the principles, processes, and techniques of non-traditional machining methods.	3	1										1		1
CO2	Compare and selection of non- conventional machining processes for suitable applications.	3	2										1		1
CO3	Apply the concepts and techniques learned in the course to solve real- technical manufacturing problems and analyse the economical and environmental issues.	3	2				1						1		1
CO4	Analyse the process parameters and characteristics of operating specialized equipments of non traditional machines.		3	1									1		1

SEE- Course Assessment Plan COs Marks Distribution Total Marks Weightage Unit I Unit II Unit III Unit IV Unit V Total Marks CO 2+9 9 9 2+9 40 40% 1 - 9 2+9 9 29% 29% 2 - - 9 29 29% 29% 2 - - - 11 11% 11% 3 - 9 2+9 20 20% 20% 4 - 9 2+9 20 20%										
COs		Μ	larks Distri	bution		Total Marka	Weightage			
	Unit I	Unit II	Unit III	Unit IV	Unit V	I OTAL MALKS	weightage			
CO	2+9	9		9	2+9	40	40%			
1										
CO	9	2+9			9	29	29%			
2										
CO			2+9			11	11%			
3										
CO			9	2+9		20	20%			
4										
	20	20	20	20	20	100	100%			
			Ap	plication =	80%, Analys	sis = 20%				

P.E.S. College of Engineering, Mandya

Department of Mechanical Engineering

[As per Choice Based Credit System (CBCS) & OBE Scheme] SEMESTER - V L-T-P:3-0-0 Course Code: P21ME5033 Credits: 03 **Contact Period -Lecture: 40 Hrs.** Exam: 3Hrs. Weightage:CIE:50%; SEE:50% **Course Learning Objectives:** The objectives of this course are to, Describe the fundamental components and working of air breathing propulsive devices and rocket engines. Apply the thermodynamic concepts to determine the performance parameters of turbojet and rocket engines.

UNIT-I Aircraft Propulsion: Review of thermodynamic principles, aerospace propulsion, principle of jet propulsion, aircraft component nomenclature, Classification of propulsive devices: basic working of Airscrew, Turbojet, Turboprop, Turbofan: bypass ratio, multispool technology, Turboshaft, Ramjet, Turboramjet and Scramjet engines.

Course Content

Self-study component: Types of military aircrafts **UNIT-II**

Theory of propulsion: Performance parameters: Thrust, general thrust equation, thrust power, thrust specific fuel consumption, propulsive efficiency and thermal efficiency of turbojet engine. Energy flow diagram of turbojet engine. Simple numericals on the performance parameters of turbojet engines. Component efficiencies of turbojet engine. Ideal and actual turbojet engine cycle. Thermodynamic analysis of turbojet engine, Simple numericals. Thrust augmentation: After burning (description only).

Self-study component: Propellers: nomenclature, terminology and types **UNIT-III** Jet engine Components: Basic description of jet engine components: Intake-Subsonic (description only). Axial flow compressor: basic requirement in aircraft, construction and working. Axial flow turbines: construction and working, blade materials, need and types of blade cooling: Combustion

chamber: requirements of the combustion chamber, the process of combustion, types of gas turbine combustion chambers. Nozzles: (description only) Convergent nozzle.

Self-study component: Inlets and nozzles of supersonic military aircrafts **UNIT-IV**

Rocket propulsion: Chemical Rockets: general operating principle Classification, performance parameters for chemical rockets and their relationships, energy and efficiencies. Simple numericals on performance parameters of chemical rockets. Solid propellant rockets: working, solid propellants: characteristics, classification, burning rate, grain configurations, typical fuels and oxidizers, properties, igniters. Comparison of air breathing and rocket propulsion.

Self-study component: Types of missiles

UNIT-V

Rocket Engines: Basic description of liquid and hybrid propellant rocket systems: Liquid propulsion rockets, feed systems, gas pressure feed system, turbo pump feed system, injectors, types of injectors, liquid propellants, cooling of rocket motors Hybrid propellant rockets, propellant oxidizer configurations. Flight Performance: rocket equation, altitude gain in simplified vertical rocket, staging of rockets.

Self-study component: Space launch vehicles

8 Hrs

7 Hrs

8 Hrs

8 Hrs

9 Hrs

AIRCRAFT AND ROCKET PROPULSION

Text Books:

V. Ganesan, "Gas Turbines", McGraw Hill, 3rd Edition, 2017, ISBN: 9780070681927.

George P. Sutton, Oscar Biblarz, "Rocket Propulsion Elements", Wiley, 9th Edition, 2017, ISBN: 978-1118753651.

Reference Books:

Saeed Farokhi, "Aircraft Propulsion", Wiley, 2nd Edition, 2014, ISBN: 9781118806777.

Philip Hill, Carl Peterson. "Mechanics and Thermodynamics of Propulsion", Pearson, 2nd Edition, 1991, ISBN: 9780201146592.

H.S. Mukunda, **"Understanding Aerospace Chemical Propulsion"**, IK International Publishing House Pvt. Ltd, 1st Edition, 2017, ISBN: 978-9385909429.

S.M. Yahya, "Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion", New Age International Publishers, 6th Edition, 2018, ISBN: 9789386649911.

V. Babu, "Fundamentals of Propulsion", Springer, 1st Edition, 2021, ISBN: 9783030799441.

Balachandran P, **"Fundamentals of Compressible Fluid Dynamics"**, Prentice Hall India Learning Private Limited, 2006, 1st Edition, ISBN: 9788120328570.

e- Resources:

https://www.youtube.com/watch?v=Hlj2eVt1Vbk

https://www.youtube.com/watch?v=Af0-5r5HJII

https://www.youtube.com/watch?v=2INUkeutjBY

https://www.youtube.com/watch?v=HYk8x3i-zwk

https://www.brahmos.com/content.php?id=10&sid=9

https://www.youtube.com/watch?v=oLRMdW3WHLo&list=PLOzRYVm0a65ey1nPhnbfrz59Hvu-NVob7&index=7

Course Outcomes: At the end of the course, students will be able to,

Apply the knowledge of thermodynamics to describe the working of air breathing and rocket engines.

Apply the basic principles of thermodynamics and fluid mechanics to describe the working of aircraft engine components.

Analyze the performance of air breathing engine and its components.

Analyze the working and performance of rocket engines.

	Course Articul	latio	on N	/ latr	ix										
	Course Outcomes	Pro	gra	m C)uto	com	es							P S	
	1					-	1	1				1	1	0	-
		1	2	3	4	5	6	7	8	9	10	11	12	01	0 2
CO1	Apply the knowledge of thermodynamics to describe the working of air breathing and rocket engines.	3													
CO2	Apply the basic principles of thermodynamics and fluid mechanics to describe the working of aircraft engine components.	3													
CO3	Analyze the performance of air breathing engine and its components.		3											2	
CO4	Analyze the working and performance of rocket engines.		3											2	

		() E E									
~~~		SEE	- Course Asse	essment Plan							
COs		Marl	ks Distribution	n		<b>Total Marks</b>	Weightage				
	Unit I	Unit II	Unit III	Unit IV	Unit V						
CO1	2+9			2+9	2+9	33	33%				
CO2	9	2+9	2+9			31	31%				
CO3		9	9			18	18%				
CO4				9	9	18	18%				
	20	20	20	20	20	100	100%				
		Applic	cation =64%, A	Analysis = 369	%						
		Course Title	e: DESIGN O	F EXPERIM	IENTS						
Course Code:	P21ME5034		Semester: V	L-T-P:2-	2-0	Credi	ts: 03				
Contact Perio	d -Lecture: 40 Hrs. Exam: 3Hrs. Weightage:CIE:50%; SEE:50%										
Course Leari	ning Objectiv	es:									
The objective	s of this cours	e are to,									

Plan design analysis and conduct experimental investigations efficiently and effectively.

Choose appropriate experiment parameters for practical applications.

#### Course Content UNIT-I

**Introduction:** Need for research, design of experiments, terminologies-Response, factor, level and replication, experimental design techniques, strategy of experimentation, typical applications of experimental design- marketing, production, finance and personnel. Basic principles of design of experiments.

8 Hrs

#### Self Study Component: Guidelines for designing experiments.

#### UNIT-II

**Basic statistical concepts:** Concepts of random variable, probability, density function, cumulative distribution function, sample and population, measure of central tendency, mean median and mode, measures of variability, concept of confidence level. Statistical distributions: normal, log normal and weibull distributions. Probability plots, choice of sample size. Illustration through numerical examples.

8 Hrs

#### **Self Study Component:** Hypothesis testing.

#### UNIT-III

**Experimental design:** Classical experiments, Factorial experiments, interactions, treatment combination, randomization. Two-level experimental designs for two factors and three factors. Three-level experimental designs for two factors and three factors, factor effects, factor interactions, fractional design, saturated designs. Illustration through Numerical examples.

#### 8 Hrs

#### Self Study Component: Central composite designs.

#### UNIT-IV

**Analysis and interpretation methods:** Measures of variability, ranking method, column effect method &plotting method, Analysis of Variance (ANOVA) in Factorial Experiments: YATE's algorithm for ANOVA, regression analysis, and mathematical models from experimental data. Illustration through Numerical examples.

8Hrs

Self Study Component: Case study on ANOVA, Grey relational analysis.



#### UNIT-V

Experiment design using Taguchi's orthogonal arrays: Types of orthogonal Arrays, selection of standard orthogonal arrays, linear graphs and interaction assignment, dummy level technique, compound factor method, modification of linear graphs. Illustration through Numerical examples.

8 Hrs

Self Study Component: Robust parameter design using response surface methodology.

#### Text Books:

D.C. Montgomery 2017, "**Design and Analysis of Experiments**", 8th Edition, John Wiley & Sons. Inc. ISBN 978-1118-14692-7

R. Panneerselvam. Hess 2012, "**Design and Analysis of Experiments**", 2nd Edition, PHI New Delhi. ISBN-978-81-203-4499

#### **Reference Books:**

R. L. Mason, R. F. Gunst and J.L. Hess 2003, Statistical Design and Analysis of Experiments with Applications to Engineering and Science, 2nd Edition, John Wiley & Sons. Inc. ISBN-978-0-471-37216-5 T.B. Barker, Quality by Experimental Design, 2005, 3rd Edition, CRC Press, ISBN 0-8247-2309-0. Madhav S Phadke, "Quality Engineering using Robust Design", 1989, Pearson education, ISBN 13:9780137451078.

#### e-Resources:

https://nptel.ac.in/courses/102106051 https://www.youtube.com/watch?v=Srq9Q-yd1Rk https://www.youtube.com/watch?v=p5I_vRPyUc0 https://www.youtube.com/watch?v=ERSWvYybOrk

#### **Course Outcomes:**

At the end of the course, the students will be able to,

**Apply** the fundamental concepts with mathematical knowledge, methodologies to bring knowledge of Design of Experiments.

**Apply** a wide range of problems between the purpose of a model and the appropriate level of complexity. **Choose** an appropriate experiment to **analyze** a new product design or process improvement through experimentation strategy.

**Analyze** the nature of variable, statistical inference, influence parameter selection, factorial concepts, conduct design of experiments.

	Course Articu	latio	on N	Aatı	rix										
	Course Outcomes	Pro	gra	m (	Dute	com	es							P S	
														0	
		1	2	3	4	5	6	7	8	9	10	11	12	01	0 2
CO1	<b>Apply</b> the fundamental concepts with mathematical knowledge, methodologies to bring knowledge of Design of Experiments.	3		1											
CO2	<b>Apply</b> a wide range of problems between the purpose of a model and the appropriate level of complexity.	3									2				
CO3	<b>Choose</b> an appropriate experiment to <b>Analyse</b> a new product design or process improvement through experimentation strategy.	3	2							1					
CO4	<b>Analyze</b> the nature of variable, statistical inference, influence parameter selection, factorial concepts, conduct design of experiments		3												



		SEE	- Course Ass	essment Plan	l		
COs		Mark	ks Distributio	n		<b>Total Marks</b>	Weightage
	Unit I	Unit II	Unit III	Unit IV	Unit V		
CO1	2+9	9			9	29	29%
CO2	9	2+9				20	20%
CO3			2+9	9		20	20%
CO4			9	2+9	2+9	31	31%
	20	20	20	20	20	100	100%
		Applic	ation $= 49\%$ ,	Analyse $= 51$	۱%		

[As per Choice Ba	ased Credit Syster	n (CBCS) & OBE Scheme]	
	SEMESTER	$\mathbf{x} - \mathbf{V}$	
Course Code: P21ME504		L-T-P: 2-2-2	Credits: 04
Contact Period-Lecture: 40 Hrs. Practical: 24 Hrs.	Exam: 3 Hrs.	Weightage: CIE: 50 %;	SEE: 50%
Course Learning Objective:	I	•	
The objective of this course is to unders mechanisms, gears, cams and enabling then mechanisms.	stand the basic c n to understand t	oncepts and the working princ he kinematic and dynamic and	ciples of simple planar alyses of simple planar
	Course Con	itent	
	UNIT-I		
freedom (without numerical), Grubler's Mobility of Mechanisms, Inversions of m slider crank chain. <b>Simple Mechanisms</b> and pawl mechanism. Peaucelliar's Strai steering mechanism, Davis steering gear n	criterion, Kigit and criterion, Kinen nechanisms: Fou intermittent m ight line mechan mechanism.	natic chain, mechanism, ma r bar chain, Single slider cra notion mechanisms- Geneva nism, Toggle mechanism, Pa	achine and structure. unk chain and Double mechanism, Ratchet antograph, Ackerman
Self-study component: Working principle ar	ad application of r	iniversal joint	ð Hrs
sen-study component: working principle an		<b>[</b>	
velocity analysis of mechanisms: Introc relative motions, motion of a link, velocit of four-bar mechanism, slider-crank mech method.	ty analysis of a lananism and cranl	addition and subtraction of link by relative velocity meth and slotted lever mechanism	hod, velocity analysis m by relative velocity
Self-study component: Instantaneous cer	ntre Kennedv's	theorem	8 Hrs
Sen study component. Insunancous con	UNIT-II	T	
<b>Static force analysis:</b> Introduction, Static members, Members with two forces and four bar mechanism and slider-crank mechanism.	c equilibrium, Ed torque, Free bo hanism without	quilibrium of two force, three ody diagrams, Static force as friction	e force and four force nalysis (graphical) of
four our meenamism and shaer crank mee	namoni without		8 Hrs
Self-study component: Principle of Virtu	ual work.		
	UNIT-I	V	
Gears and Gear trains: Classification & Simple gear trains, Compound gear train finding velocity ratio of epicyclic gear tra Governors: Introduction, Types, working	& application of as, Reverted gea ains. Estimation g principle and a	different types of gears, Sp r trains, Epicyclic gear train of Tooth load and torque in pplication [without numerica	ur Gear terminology, s, Tabular method of epicyclic gear trains. l].
			8 Hrs
Self-study component: Application and I	limitations of dif	ferent types of gears.	
Come Types of some types of fellower	UNIT-V	ower motion SUM Unife	m valaaity uniform
acceleration and retardation and Cycloida different types of motion; Displacement of cam with reciprocating follower having ky	l motion. Displa diagram for follo nife-edge roller	accele accement, Velocity and accele ower motion, Construction of and flat –faced follower	ration of follower for of cam profiles - Disc
			8 Hrs
Self-study component: Applications of d	lifferent types of	cams.	
	<b>Practical Co</b>	ntent	
			24 Hrs



2. To find the gear ratio using simple and compound gear trains.

3. To find centrifugal force and plot speed v/s lift for Watt governor.

4. To find centrifugal force and plot speed v/s lift for Porter governor.

5. To find centrifugal force and plot speed v/s lift for Proell governor.

6. To find centrifugal force and plot speed v/s lift for Hartnell governor.

7. To find valve timing diagram by using disc cam.

8. Demo of Steering mechanism.

9. Demo of Oldham's, Quick return motion, Elliptical trammel, Ratchet and Pawl mechanism.

#### **Text Books:**

S.S. Rattan, **"Theory of Machines"**, Tata McGraw-Hill, New Delhi, 4th edition, 2015. ISBN: 9789351343479

V.P. Singh, "Theory of Machines", Dhanpat Rai & Co., 3rd Edition, 2013, ISBN: 9788177000528 Reference Books:

Sadhu Singh, "**Theory of Machines**", Person Eduction (Singapore) Pvt. Ltd Indian Branch, New Delhi, 2nd Edition, 2006. ISBN: 9788177581270

R. S. Khurmi and J. K. Gupta, "Theory of Machines", S. Chand and Co., 2005, ISBN: 9788121925242.

P. L. Ballaney, "**Theory of Machines and Mechanisms**", Khanna Publishers, New Delhi, 24th edition, 2005, ISBN: 9788174091222.

R. K. Bansal, "**Theory of Machines-I**", Laxmi Publications, 1st edition, 2013, ISBN:9788131809846. e- Resources:

https://www.youtube.com/watch?v=yDEJxYGAoso&list=PLbRMhDVUMngdCkMipemSKP_dCgZLLfOe8

https://www.youtube.com/watch?v=jJlJNzQ2DnY

https://www.youtube.com/watch?v=JhGonPl2JpY

https://www.youtube.com/watch?v=lu_Qw4Y4XRQ

https://www.youtube.com/watch?v=55tKVBVQDUY

urse Outcomes: At the end of the course, students will be able to,

**Apply** the basic concepts of mechanical elements like links, chains, gears and cams in understanding the construction and working of mechanisms.

**Apply** the basic concepts in understanding, degrees of freedom in different mechanisms and working principles of governors.

**Analyze** the gear trains, static force, velocity in four bar and slider crank mechanisms, and **develop** cam profile for various follower motion.

Make use of experimental data for writing a report as an individual or as a team member to communicate effectively.

	Course Articulation Mat	rix													
Cours	a Autoomog			P	rog	gra	m	Ou	tco	m	es			PS	30
Cours	e Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	Apply the basic concepts of mechanical elements like links,														
<b>CO1</b>	chains, gears and cams in understanding the construction and	3												1	1
	working of mechanisms.														
CO2	Apply the basic concepts in understanding, degrees of														
	freedom in different mechanisms and working principles	3													
	of governors.														
<b>CO3</b>	Analyze the gear trains, static force, velocity in four bar and														
	slider crank mechanism, and develop cam profile for various		3	3										2	
	follower motion.														1
<b>CO4</b>	Make use of experimental data for writing a report as an	2								3	3			2	
	individual or as a team member to <b>communicate</b> effectively.	5								5	5			Ζ	1



			SEE- Course	e Assessment l	Plan		
COs		Ma	rks Distributior	1		Total Manla	Weightage
	Unit I	Unit II	Unit III	Unit IV	Unit V	1 otal Warks	weightage
<b>CO1</b>	9+2			2+9		22	22%
CO2	9			9		18	18%
CO3		2+9+9	2+9+9		2+9+9	60	60%
<b>CO4</b>			Note: As	sessment only i	in CIE		
	20	20	20	20	20	100	100%
			Application=4	0%, Analysis=	=60%		



MECHATRONICS AND N	AICROPROCESSOR	
[As per Choice Based Credit Syste	m (CBCS) & OBE Scheme	]
SEMESTE	R – V	
Course Code: P21MEO5051	L-T-P: 3-0-0	Credits: 03
Contact Period-Lecture: 40 Hrs. Exam: 3 Hrs.	Weightage: CIE: 50 %	; SEE: 50%
Course Learning Objective:	naanta of Maahatroniaa	Machatronia products and
their applications. Different Electrical and Machanical	ncepts of Mechatronics, f	andition products and
concepts of Microprocessor and data representation using	different number system	condition process, basic
Course Co	ntent	
UNIT-	I	
<b>Introduction:</b> Introduction to Mechatronics systems, Closed loop control systems, basic elements of close programmable logic controller (PLC), examples of mech engine management system, classification of sensors, switches, their merits and demerits, Hall – effect sens sensors	measurement systems, c sed loop control system atronic systems, the digit light sensors, Tactile se sors, eddy-current Proxim	control systems, Open & a, sequential controllers, tal camera and autofocus, ensors, inputting data by nity sensors, selection of
Self-study component: Vetronics, Bio-mechatronics, Sr	nart manufacturing (Indus	<b>8 Hrs</b>
UNIT-1	II	, , , , , , , , , , , , , , , , , , ,
thyristors and triacs, bipolar transistors, power MOSFE magnet) DC motors, brush type DC motors with field c motors, stepper motors, stepper motors specifications.	TS, solenoids, DC motor oils, brushless permanent	s, brush type (permanent t magnet DC motors, AC 8 Hrs
Sen-study component: Control of blush type a. c motor		
<b>Signal conditioning</b> : Signal conditioning processes, Oppoperational amplifiers, protection, filtering, wheat st Conversion, sampling theorem, digital to analog converse modulation.	berational amplifiers, invo one bridge, Digital sig ion, Multiplexers, Data A	erting and non- inverting nals, Analog to Digital cquisition system, pulsed
Self-study component: Digital signal processing, summ	ing & Differential Amplif	fiers
UNIT_I	V	
Introduction to Microprocessor: Evolution of M Microprocessor programming, instructions, machine and level language programming, organization of the 8085 a I/O devices, registers in the 8085 and 8086, instruction Positional number system, binary number system, of Hexadecimal number system, conversion from one representation, representation of floating-point numbers, Self-study component: Selecting a micro controller.	icroprocessor, Organizat I mnemonics codes, mach and 8086, data and addre on set of the 8085 and octal number system, of number system to an accuracy and range in flo	tion of Microcomputer, nine, assembly and High ess busses, addressing the 8086. <b>Number System:</b> lecimal number system, other, negative number ating point numbers. <b>8 Hrs</b>
Sen-study component: Selecting a filtero controller, Ap	v	Jiing
Industrial Automation Techniques: Automated Guid Systems (MEMS), Automated Storage Systems: Storage/Retrieval Systems, Work-in-process Storage, Frequency Identification (RFID), Design for Automa Systems. Different control technologies in automation Principles and Methods, Sensor Technologies for Automa	ded Vehicle Systems. M Storage System Pe Product identification ated Assembly, Types on h, Inspection and testing nated Inspection, Coordin	licro Electro Mechanical erformance, Automated system: Barcode, Radio of Automated Assembly g, Automated Inspection ate Measuring Machines,



Other Contact Inspection Methods, Machine Vision, Other optical Inspection Methods.

**Self-study component:** Basics of Arduino & Raspberry Pai, Types of automation.

#### 8 Hrs

#### **Text Books:**

W. Bolton, "Mechatronics", Addison Wesely Longman, Inc.(Pearson Education, Essex, England), Indian edition published by Dorling Kindersley, India Pvt. Ltd. Copyright, 4th edition, 2010. ISBN: 978-81-317-3253-3.

Aditya P Mathur, "**Introduction to microprocessor**", Tata McGraw-Hill Publishing Co. Ltd., 3rd edition, 2015. ISBN: 0-07-460222-5, 978-0-07-460222-5.

#### **Reference Books:**

R S Ganokar, **"Microprocessor Architecture, programming and applications with 8085/8085A",** Wiley Eastern Publication, 6th edition, 1993, ISBN: 978-0852262979.

Malvino, **"Digital computer Electronics"**, McGraw Hill Education, 3rd edition, 2001, ISBN: 978-0074622353.

K P Ramachandran, G K Vijaya Raghava and M S Bala Sundaram, "Mechatronics & Microprocessors", Wiley precise India, 1st Edition, 18th May 2009, ISBN: 978-8126519859.

#### e- Resources:

https://www.youtube.com/watch?v=zVVITxiec7g&list=PLLy_2iUCG87BNHXRb6L2pWEpMcLoFaY_U https://www.youtube.com/watch?v=UrST2yu8zQ&list=PLLy_2iUCG87BNHXRb6L2pWEpMcLoFaY_U&idex=2 https://www.youtube.com/watch?v=4lilX8cHDHI&list=PLLy_2iUCG87BNHXRb6L2pWEpMcLoFaY_U&index=3 https://www.youtube.com/watch?v=n7Fs7WZY0CA&list=PLLy_2iUCG87BNHXRb6L2pWEpMcLoFaY_U&index=20

urse Outcomes: At the end of the course, students will be able to,

**Apply** the basic concepts of different elements used in mechatronics system in understanding the various types of transducers, actuators, sensors and their applications and signals and processing.

**Apply** the principles of mechatronics and automation for the development of productive and efficient manufacturing systems.

**Apply** the concepts of number systems and data representation in microprocessor programming and interfacing.

**Analyze** the mechatronic systems by considering the interaction between mechanical components, sensors, actuators, and control systems.

	Course Articulation Mat	rix													
Course	a <b>O</b> utaomaa			P	rog	gra	m (	Ou	tco	ome	es			<b>P</b> S	<b>SO</b>
Cours	e Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	Apply the basic concepts of different elements used in														
<b>CO1</b>	mechatronics system in understanding the various types of	3												1	
	transducers, actuators and their applications and signals and	3												1	
	processing.														
CO2	<b>CO2</b> Apply the principles of mechatronics, sensors and automat														
	for the development of productive and efficient manufacturing	3													
systems.															
<b>CO3</b>	Apply the concepts of number systems and data														
	representation in microprocessor programming and	3											1	1	
	interfacing.														
<b>CO4</b>	Analyze the mechatronic systems by considering the														
	interaction between mechanical components, sensors		2										1		
	actuators, and control systems.														



SEE- Course Assessment Plan												
COs		Ma	Total Manka	Weightage (9/)								
	Unit I	Unit II	Unit III	Unit IV	Unit V		weightage (%)					
<b>CO1</b>	2+9					11	11%					
CO2	9	2+9	9		2+9	40	40%					
<b>CO3</b>			2+9	2+9		22	22%					
<b>CO4</b>		9		9	9	27	27%					
	20	20	20	20	20	100	100%					
Application=73 %, Analysis=27 %												

P.E.S. College of Engineering, Mandya

**Department of Mechanical Engineering** 

#### **ROBOTICS AND AUTOMATION**

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER - V

Course Code: P21MEO5052	L-T-P: 3-0-0	Credits: 03
Contact Period - Lecture: 40Hrs. Exam: 3Hrs.	Weightage: CIE:50%;	SEE:50%
Course Learning Objectives:		

The objectives of this course are to,

Familiarize students with brief history of robot and basic concepts of industrial robot.

Expose the students to programming languages of robot.

Make the students familiar with various robots in industrial applications.

Course Content												
UNIT-I												
NTRODUCTION:	Automation	and	robotics,	brief	history	of	robotics,	robot	anatomy,	joints	and	

**INTRODUCTION:** Automation and robotics, brief history of robotics, robot anatomy, joints and links, wrist and its motions, classifications of robots, geometrical configuration, advantages and applications of each, work volume, resolution, accuracy and repeatability, simple numerical.

Self- study Component: Pay load and Stability of robots.

#### UNIT-II

**STRUCTURE OF ROBOTIC SYSTEM:** End effectors- types of grippers and tools. Robot drive system: hydraulic, electric and pneumatic. Types of actuators. Feedback components: position and velocity sensors. Internal state sensors-encoders, potentiometer and resolver. External state sensor-tactile, proximity and range sensors.

Self Study Component: Force and Torque sensors.

#### UNIT-III

**ROBOT PROGRAMMING:** Introduction, methods of robot programming-lead through method, textual robot language method. Robot language structure- wait, signal and delay commands, branching, elements and functions, simple programs.

Self Study Component: Generations of robot programming Languages.

#### UNIT-IV

**AUTOMATION:** Basic elements of an automated system, advanced automation functions, levels of automation, computer process control and its capabilities. Forms of computer process control, levels of industrial process control.

#### Self Study Component: Direct Digital Control.

UNIT-V

**ROBOTS IN MANUFACTURING:** Material Transfer: general considerations in robot material handling- pick and place, palletizing operations. Machine loading and unloading- Die casting, Plastic moulding, Forging, machining and stamping press operations. Processing operations- features of spot welding, arc welding and robot spray coating.

Self Study Component: Recent developments in industrial applications of robot.

#### **Text Books:**

Michell Grover, Mitchel weiss, Roger nagel "Industrial Robots", McGraw Hill 2012, India, 2ndedition, ISBN-13:9780070265097.

Yoramn Koren, "Robotics for Engineers" McGraw hill Intl. Book Co., Newdelhi 1987, ISBN-13:9780070353992.



08Hrs

08Hrs

**08Hrs** 

**08Hrs** 

08Hrs



#### **Reference Books;**

Robert J. Schilling, "**Fundamentals of Robotics**", PHI, 1st edition 2011, ISBN- 13:9788120310476. K.S. Fu, R.C. Gonzales and Lee, "**Robotics**", McGraw Hill Intl. India, 1stedition, 2008, ISBN-13:9780070265103.

Richard D. Klafter, C Thomas A, "**Robotic Engineering**" PHI,1993, ISBN-13:9788120308428. R.K. Mittal and J. Nagarath, "**Robotics and Control**" Tata McGraw Hill, Delhi, 6th edition 2007, ISBN:0070482934.

#### e- Resources:

https://nptel.ac.in/courses/112105249 https://nptel.ac.in/courses/112101098

#### **Course Outcomes**

At the end of the course, students will be able to,

**Identify** the components of a robot and distinguish the types of robot configurations

Apply and identify sensors/drives for automation and robots.

Analyze and develop robot task programs using robot language.

Analyze models and integrate the drives for industrial robots and automation systems.

Course Articulation Matrix																																							
Cours	e Outcomes	5					I	Prog	gran	n Ou	itco	mes	5			PS	50																						
				1	2	3	4	5	6	7	8	9	10	11	12	01	02																						
CO1	<b>Identify</b> the components of a robot and distinguish the types of robot configurations.																																						
CO2	Apply an for automatic	d identify s ation and rol	ensors/drives bots.	3																																			
CO3	O3 Analyze and develop robot task programs using robot language.					1									1		1																						
CO4	Analyze a drives fo automatio		3	2																																			
			SEE- C	ours	e As	ses	sme	nt P	lan																														
COs		Ma	arks Distribu	tion						т	otol				Waia	htaa	•																						
	Unit I	Unit II	Unit III	Unit	t IV		Un	it V		I	otal	STAT 1	IFKS		weig	ntag	e																						
CO1	2+9+9											20			20	)%																							
CO2		2+9			9			9		29		29			29 2		29		29		29		29		29		29		29		29		29		29		29	%	
<b>CO3</b>			2+9+9								20				20	)%																							
CO4		9		2	+9			2+9			31 31			31%																									
	20	20	20		20			20			]	100			10	)0%																							
	Application =49% Analysis = 51%																																						

EXP	PERIMENTAL STR	RESS ANALYSIS	
[As per Choice	Based Credit System	m (CBCS) & OBE Scheme]	
Course Code: P21MF05053	SEMESTER	K – V T "T "P• 3.0.0	Credits: 03
Contact Period-Lecture: 40 Hrs.	Exam: 3 Hrs.	Weightage: CIE: 50 %:	SEE: 50%
Course Learning Objectives:		(reightage: cill: co /o;	52210070
The objectives of this course are to,			
Provide the knowledge about	the experimental	techniques to analyze the st	resses induced in the
engineering components.	-		
Deal with the direct and indire	ect methods associa	ted with the measurement of	stresses.
Comprise the concepts of bri	ttle coatings, analy	vsis of coating data, crack de	etection methods and
nany other photo elastic techniques.	Carrier Car	- 4 4	
		ntent	
Data acquisition and processing.	UNII-I UNII-I General data acqui	l sition system signal condit	ioning revisited date
ransmission analog to digital and dig	rital to analog conv	version basic component (st	orage and display) or
data acquisition system <b>Analysis of</b>	experimental dat	ta: cause and types of experience	rimental errors erro
analysis, statistical analysis of experimentation	mental data, proba	bility distribution. Gaussian.	normal distribution
chi-square test, method of least square,	standard deviation	n of mean.	,
-			8 Hr:
Self study component: Correlation co	efficient multivaria	able regression method.	
	UNIT-I	I	
Strain gauge: Characteristics of strai	in gauge, LVDT, o	electrical strain gauge, gauge	e factor, temperature
compensation methods. Strain roset	te: Two element a	and three element rectangul	ar and delta rosette
Wheatstone bridge - balanced and u	inbalanced, balanc	ing technique, Potentiomete	er circuit, sensitivity
ange.			8 Hr
Self study component: Applications o	of strain gauge and	potentiometer.	0 111,
	UNIT-II	I	
Fwo dimensional photoelasticity: Int	troduction, nature of	of light, wave theory of light.	, polarization, natura
louble refraction, stress optic law, eff	ect of stressed mo	dels in plane and circular po	lariscopes, isoclinics
sochromatics, fringe order determinati	on, fringe sharpeni	ing, numerical problems.	
			8 Hrs
Self study component: separation met	hod-shear differen	ce method	
Costing methods. Direfringence	UNIT-I	V offection polarizaona consit	ivity of hirofringon
coating methods: Bilennigence cos	aning technique, in	effection polariscope, sensitive laws	of failure of brittle
coating isostatics and isoentatics crac	k nattern crack det	tection technique Types of h	rittle coating
outing, isostaties and isoontaties, orac.	k puttern, erdek det	teenon teeninque, Types of of	8 Hrs
Self study component: Properties of s	tress coat materials	5.	
<b>v k</b> 1	UNIT-V	V	
Holography and Moire Technique: H	Holography: Equati	ion for plane waves and sphere	rical waves, intensity
coherence, recording process, recons	struction process,	holographic interferometer.	Moire techniques
Moiré phenomenon, fringe analysis, ge	cometrical approach	h, displacement approach.	
	1 11 11 01		8 Hrs
Self study component: Advantages an	id applications of N	Aoire techniques.	
Sadhu Singh "Evnorimontal Str	ass Analysis" VI	hanna Publishers Ath Edition	n 2000 ISBN: 078
8174091826.	. 55 Analysis , N	nanna i uonsheis, 4 Euluoi	u, 2007. ISDIN. 970
Dally and Riley, "Experimental S	Stress Analysis". N	AcGraw Hill Education, 3rd	Edition, 1991, ISBN
978-0070152182		·····, •·•	, , ,



#### **Reference Books**

Srinath and Lingaiah, "Experimental Stress Analysis", Tata McGraw Hill Education, 1st Edition, 1984, ISBN: 9780074519264.

M.M Froncht, "Photoelasticity Vol I and II," John Wiley and Sons, 1st Edition, 1941, 1948, New York.

Kuske Albrecht and Robertson, "Photoelastic Stress Analysis", John Wiley and Sons, 1st Edition, 1974, ISBN: 978-0471511014.

Nakra and Chaudhary, "Instrumentation, Measurement and Analysis", Tata McGraw Hills Companies, New York, 7th Edition, 2006, ISBN: 978-9385880629.

#### e- Resources

https://archive.nptel.ac.in/courses/112/106/112106068/

https://onlinecourses.nptel.ac.in/noc23_me11/preview

https://structures.dhu.edu.cn/_upload/article/files/17/08/7d3cfbb24537870263a545aeb205/adfab16f-074f-4897-b786-97755efbbac9.pdf

urse Outcomes: At the end of the course, students will be able to,

**Apply** the concept of data acquisition, processing, electrical resistance strain gauges, potentiometer and **analyse** the experimental data.

Apply methods of photo elasticity and analyze stress strain behavior of solid bodies.

Analyze stress strain behavior of solid bodies using different coating techniques and strain gauges.

Make use of Holography and Moire Techniques in experimental stress analysis.

			Course Ar	liculation Mat	ГІХ													
Course	a Outaamaa						P	rog	ra	m (	Ou	tco	m	es			P\$	50
Cours	e Outcomes				1	2	3	4	5	6	7	8	9	10	11	12	1	2
<b>CO1</b> Apply the concept of data acquisition, processing electrical resistance strain gauges, potentiometer and <b>analyse</b> the experimental data.																		1
CO2	<b>CO2</b> Apply methods of photo elasticity and analyze stress 3 2								1									
<b>CO3</b> Analyze stress strain behavior of solid bodies usin different coating techniques and strain gauges.						3												
<b>CO4</b> Make use of Holography and Moire Techniques in experimental stress analysis.				3	2													
			SEE- Course	e Assessment I	Pla	n												
COs		Ma	rks Distributio	n				Т	'ot	പ	\/ <b>I</b>	rlz		Noi	ah	toa	<b>n</b> (	0/)
	Unit I	Unit II	Unit III	Unit IV	U	Jnit	t V	1	υι	ai	via	IIK	<b>b</b> 1	vei	gn	lag	e (	/0)
<b>CO1</b>	2+9	2+9+9								3	1				3	1%		
<b>CO2</b>			2+9+9		20 2				2	0%								
<b>CO3</b>	9			2+9	9 29		2+9 9 29		29%		29%							
<b>CO4</b>				9	2+9 20		2+9 20 2		9 2+9 20		2+9 20 2		20%					
	20	20	20	20	20 100 100%					ó								
	Application = $71\%$ , Analysis = $29\%$																	



**P.E.S.** College of Engineering, Mandya

**Department of Mechanical Engineering** 

#### FUNDAMENTALS OF THERMAL SCIENCES

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER - V

Course Code: P21ME5054		L-T-P: 3-0-0	Credits: 03
Contact Period-Lecture: 40 Hrs.	Exam: 3 Hrs.	Weightage: CIE: 50 %;	SEE: 50%
Course Learning Objectives.			

#### Learning Objectives:

The objective of this course is to understand the fundamental principles of thermal sciences and be able to apply them to analyze and solve engineering problems related to energy transfer, conversion, and thermal system performance.

<b>Course Conten</b>
TINITT T

UNIT-I

Energy Transfer: Basic concepts and definitions, Thermodynamic systems, Thermodynamic properties, introduction to Laws of thermodynamics, thermometry - Importance and applications of temperature measurement, Energy conservation, Heat and work interactions. Heat Transfer: Conduction heat transfer, Convection heat transfer, Radiation heat transfer, Heat exchangers. **Combustion and Fuels:** Combustion process and principles, Fuel properties and characteristics. 8 Hrs

Self study component: Applications of energy transfer

**UNIT-II** 

Energy Conversion Technologies: Working of Steam power plants, Internal combustion engines, Gas turbines and Heat pumps. Solar energy conversion (photovoltaics, solar thermal), Wind energy conversion (wind turbines), Geothermal energy conversion, Biomass energy conversion (Introduction of Biogas, Bioethanol and Biodiesel). Energy Storage Technologies: Overview of energy storage systems, Battery technologies (lithium-ion, flow batteries, etc.) and Thermal energy storage.

8 Hrs

Self study component: Types of Biogas Digesters.

UNIT-III

Introduction to Thermal Engineering Applications: Overview of thermal engineering principles and applications, Definition and scope of thermal engineering, Importance and applications of thermal engineering in various industries (Power Plants, Heating Ventilation and Air Conditioning, Automotive, etc.), Environmental impacts and sustainability considerations in thermal engineering. Thermal Systems and Components: Classification, Overview of components: boilers, heat exchangers, turbines, compressors, pumps, etc. 8 Hrs

**Self study component:** Different types of blowers and fans.

#### **UNIT-IV**

Refrigeration and Air Conditioning (RAC): Overview of refrigeration and air conditioning systems, Importance and applications of refrigeration and air conditioning technology, Historical developments and milestones in the field, Working of RAC systems (Window, Split and Central Air conditioning). Refrigerants and refrigerant properties, Working of Vapour Compression refrigeration system, Introduction to HVAC system. 8 Hrs

Self study component: Refrigerants used in domestic and commercial refrigerators and their properties.

UNIT-V

MEMS and Nanotechnology: Role of Thermal Engineering in MEMS and Nanotechnology. Thermal Management: Introduction to heat management systems (heat sinks, micro coolers, micro & Nano fluidic channels). Introduction to thermal Actuators and Sensors and thermal Barrier Coatings. 8 Hrs Self study component: Applications of actuators and sensors.

#### **Text Books**

Mahesh M Rathore, "Thermal Engineering-II", McGraw Hill Education, 1st edition, 2018, ISBN: 978-9353165048.

G D Rai, "Non-Conventional Energy Sources", Khanna publishers, 6th Edition 2004, ISBN: 9788174090737.



#### **Reference Books**

Khurmi R S & Gupta J K, "A Textbook of Thermal Engineering", S Chand Publishers, 1st edition, 2018, ISBN: 978-81-219-2573-0.

B H Khan, "**Non-Conventional Energy Resources**", McGraw Hill Education India Private Limited, 3rd edition, 1 July 2017, ISBN: 9789352601882.

Subhas P Sukhatme, J K Nayak, "**Solar energy**", Tata McGraw Hill India, 3rd Edition, 2009, ISBN: 9780070142961.

A R Jha, "MEMS and Nanotechnology-Based Sensors and Devices for Communications, Medical and Aerospace Applications", CRC Press Inc., 19 September 2019, ISBN: 978-0367387532.

Sunipa Roy, "**MEMS and Nanotechnology for Gas Sensors**", CRC Press; 1st edition (30 June 2020), ISBN: 978-0367575526.

#### e- Resources

https://youtu.be/2LPQX4F-GoA https://youtu.be/9GMBpZZtjXM https://youtu.be/nlsNmhiID74

https://youtu.be/j9y0gfN9WMg

https://youtu.be/ebO38bbq0_4

urse Outcomes: At the end of the course, students will be able to,

**Apply** a basic understanding of the laws and principles of thermal engineering, including energy forms, thermodynamics, and heat transfer mechanisms.

**Apply** the basic concepts and principles to analyze the different types of thermal systems and components used in various industries and applications.

**Apply** the environmental and sustainability aspects of thermal engineering to recognize the importance of clean and energy technologies.

**Identify** the impact of thermal engineering in modern fields of technologies.

	Course Articulation Matrix																	
		Course Ou	4000000		Program Outcomes						PS	30						
		Course Ou	tcomes		1	2	3	4	5	6	7	8	9	10	11	12	1	2
	Apply a basi	c understandin	g of the laws and	d principles of														
CO1	thermal er	ngineering,	including end	ergy forms,	3													
	thermodynam	nics, and heat the	ransfer mechanis	sms.														
CO2	Apply the b	asic concepts	and principles t	to analyze the														
	different type	es of thermal s	systems and cor	nponents used	3	2												
	in various inc	lustries and app	plications.															
<b>CO3</b>	Apply the e	environmental	and sustainabili	ity aspects of	of													
	thermal engin	neering to reco	gnize the impor	tance of clean	3	2					2						2	
	and energy te	chnologies.																
<b>CO4</b>	Identify the	impact of the	ermal engineering	ng in modern	g in modern 2 2												1	
	fields of tech	nologies.			5	2											1	
			SEE- Course	e Assessment I	Pla	n												
COs		Ma	rks Distribution	1				n	[at	പ	Ма	mlz		No	ah	toa	o ()	07.)
	Unit I	Unit II	Unit III	Unit IV	U	J <b>ni</b> t	t V		ιοι	a	lv1a	IIK	5	ve	Ign	lag	e (	/0)
<b>CO1</b>	2+9+9									2	0				2	0%		
CO2		2+9+9	2+9+9				40					4	0%					
CO3				2+9+9		20				2	0%							
<b>CO4</b>					2	2+9+9 20 200			0%	)%								
	20	20	20	20		20 100 100%					ó							
	Application = 100%																	



ENERGY CON	VERSION LABO	RATORY	
[As per Choice Based Cr	redit System (CBCS)	& OBE Scheme]	
SI	EMESTER – V	T T D.0.0.2	C 1:401
Course Code: P21NIEL506	European 2 Hang	L-1-P:U-U-2	
Contact Period-Lecture: 50 Hrs.	Exam: 5 Hrs.	SEE:50	IE:50;
Course Learning Objectives:			
The objectives of this course are to,	1 monantias of fuel	a and lubricant ails	
Fractically determine the thermal and physica	a properties of fuer		
Evaluate the performance of four stroke inter	nal combustion eng	lines.	
	FARI-A		15 Hrs
ments on Fluid Properties			
Expt1: Determination of Flash point and	Fire point of lubri	cating oil using Clevel	land Open-Cup
Apparatus.			
Expt2: Determination of Viscosity of lubric	cating oil using Red	woods, Say bolts and T	Forsion
Viscometers.			
<b>Expt3:</b> Determination of Calorific value of	solid fuel using Lev	wis Thomson calorimet	ter.
<b>Expt4:</b> Determination of Calorific value of	gaseous fuels using	Junkers Gas calorimet	ter.
<b>Expt5:</b> Determination of thermal conductiv	ity of liquids.		
-	•		
	PART-B		15 11
ments on Performance Parameters			15 Hrs
Expt6: Performance test on Four Stroke Die	esel Engine.		
Expt7: Performance test on Four Stroke Pet	trol Engine.		
Expt8: Morse test on Multi Cylinder Engine	e.		
Expt9: Preparation of biodiesel and to deter	mine the performation	nce parameters using di	iesel engine
test rig.			
Reference Books:			
P.K. Nag, <b>"Basic and Applied Thermody</b> 9780070260627	v <b>namics</b> " Tata Mc	Graw Hill, 3 rd Editior	n, 2006, ISBN:
M. L. Mathur and R. P. Sharma, " <b>Internal (</b> 2016, ISBN: 978-9383182428.	Combustion Engin	e," Dhanpat Rai Public	cations, 22 July
Dr. Jagadish Lal <b>"Fluid Mechanics and Hy</b> 2002, ISBN: 9788120002722	ydraulics" Metrop	olitan Book Co. Pvt. L	td, New Delhi,
Dr. R.K.Bansal, "Fluid mechanics and hydr edition, 2015, ISBN: 9788131808153.	raulic machines"L	axmi publications Ltd.,	, New Delhi. 9 th
e-Resources:			
https://www.youtube.com/watch?v=2b0YaDr	rdO1I		
https://www.youtube.com/watch?v=DjjbltLW https://www.youtube.com/watch?v=Z4RreIm	VNVQ 0T9C4&t=1063s		



**CO2** 

**CO3** 

**urse Outcomes**: At the end of the course, students will be able to,

**Apply** the basic principles of fluid mechanics and thermodynamics to determine the thermo physical properties of liquids.

Analyze the performance parameters of four stroke IC engines using conventional and biofuels. Make use of experimental data for writing a report as an individual or as a team member to communicate effectively.

			Course Ar	ticulation M	latr	ix												
		Course Outcomes Program Outcomes								P: O	5							
					1	2	3	4	5	6	7	8	9	10	11	12	0 1	0 2
CO1	Apply the thermodyn properties	basic principles amics to determi of liquids.	3	2								1		1	1			
CO2	Analyze the IC engines	he performance particular test between the second sec	e performance parameters of four strok using conventional and biofuels.											1		1	1	
CO3	Make use as an in communic	of experimental of <b>dividual</b> or <b>as</b> cate effectively.	data for writ a team	ing a report member to	3								3	3		1	1	
			SEE- Cours	e Assessmei	nt P	lan	l										-	
	COs Marks Distribution Total Marks Wei						ight e	ghtag e										
		Part A	Part B	Viva	Vo	oce												
	CO1	20 20								4	-0%							

20

 $2\overline{0}$ 

Application =40%, Analysis = 40%,

20

10

10

Communication =20%

20

10

50

40%

20%

100%



	Internship - II											
[As per Choice Ba	ased Credit System (CBCS) & O	BE Scheme]										
SEMESTER – V												
Course Code:	P21INT507	Credits:	02									
Teaching Hours/Week (L:T:P)	0:0:0	<b>CIE Marks:</b>	-									
<b>Total Number of Teaching Hours:</b>	-	SEE Marks:	100									
All the students registered to III year of BE shall have to undergo a mandatory internship of 04												
weeks during the vacation of	IV semesters in indu	strial/Govt./NGO/N	/ISME/Rural									
Internship/Innovation/Entrepreneu	rship/AICTE Intern Shala/	College Partnered I	ndustries. A									
Semester End Examination (Prese	ntation followed by Quest	tion Answer sessio	n) shall be									
conducted during V semester and	the prescribed credit shall	be included in the	V semester									
grade card. The internship shall be	considered as a head of pass	sing and shall be con	nsidered for									
the award of degree. Those, who do	not take up/complete the i	nternship shall be o	declared fail									
and shall have to complete during	subsequent Semester End E	xamination after sa	atisfying the									
internship requirements. (The fact	ilty coordinator or mentor	has to monitor th	ie students'									
internship progress and interact to c	uide them for the successful	l completion of the i	nternshin)									
<b>Internship-II:</b> SEE component will be the only seminar/Presentation and question answer												
session												



Social Connect and Responsibility				
[As per Choice Based Credit System (CBCS) & OBE Scheme] SEMESTER – V				
Course Code:		P21UHV509	Credits:	01
Teaching Hours/Week (L:T:P):		1:0:0	CIE Marks:	100
Total Number of Teaching Hours:		25+5	SEE Marks:	
Course Outcomes: This course will enable the students to:				
• <b>Identify</b> the needs of the community and involve them in problem solving.				
• <b>Demonstrate</b> the knowledge about the culture and societal realities.				
• <b>Develop</b> sense of responsibilities and bond with the local community.				
• Make use of the Knowledge gained towards significant contributions to the local				
community and the society at large.				
• <b>Develop</b> among themselves a sense of social & civic responsibility & utilize their				
knowledge in finding practical solutions for individual and community problems.				
PART-I				
documentary or a photo blog describing the plant's origin, its usage in daily life, its appearance in folklore and literature – Objectives, Visit, case study, report, outcomes.				
PART-II				
<b>Heritage walk and crafts corner:</b> Heritage tour, knowing the history and culture of the city, connecting to people around through their history, knowing the city and its craftsman, photo blog and documentary on evolution and practice of various craft forms - Objectives, Visit, case study, report, outcomes.				
PART-III				
<b>Organic farming and waste management:</b> Usefulness of organic farming, wet waste management in neighboring villages, and implementation in the campus.				
PART-IV				
Water conservation: Knowing the present practices in the surrounding villages and implementation in the campus, documentary or photoblog presenting the current practices – Objectives, Visit, case study, report, outcomes.				
PART-V				
<b>Food walk:</b> City's culinary practices, food lore, and indigenous materials of the region used in cooking – Objectives, Visit, case study, report, outcomes.				


Course	Outcomes: On completion of this course, students are able to:		
COs	Course Outcomes with Action verbs for the Course topics	Bloom's Taxonomy Level	Level Indicator
CO1	<b>Identify</b> the needs of the community and involve them in problem <b>solving.</b>	Knowledge / Apply	L1 & L3
CO2	<b>Demonstrate</b> the knowledge about the culture and societal realities.	Understand	L2
CO3	<b>Develop</b> sense of responsibilities and bond with the local community	Apply	L4
CO4	<b>Make use</b> of the Knowledge gained towards significant contributions to the local community and the society at large.	Apply	L4
CO5	<b>Develop</b> among themselves a sense of social & civic responsibility & utilize their knowledge in finding practical solutions for individual and community problems.	Create	L6

#### **Course Articulation Matrix**

# Mapping of Course Outcomes (CO) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

Sl. No.	Course Outcome Programme Outcomes										Programme Specific outcomes					
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	<b>Identify</b> the needs of the community and involve them in problem <b>solving.</b>	-	-	-	-	-	2	2	3	3	3	-	3	-	_	-
2	<b>Demonstrate</b> the knowledge about the culture and societal realities.	-	-	-	-	-	2	2	3	3	3	-	3	-	_	-
3	<b>Develop</b> sense of responsibilities and bond with the local community.	-	-	-	-	-	2	2	3	3	3	-	3	-	_	-
4	Make use of the Knowledge gained towards significant contributions to the local community and the society at large.	-	-	-	-	-	2	2	3	3	3	I	3	-	_	-
5	<b>Develop</b> among themselves a sense of social & civic responsibility & utilize their knowledge in finding practical solutions to individual and community problems.	-	-	-	-	-	2	2	3	3	3	-	3	-	-	-



#### **Guideline for Assessment Process:**

#### **Continuous Internal Evaluation (CIE)** :

After completion of the social connect and responsibility course, the student shall prepare, with daily diary/ report as reference and a comprehensive report in consultation with the faculty/mentor to indicate what he has observed and learned in the social connect period.

The report shall be evaluated on the basis of the following below criteria's or other relevant criteria pertaining to the activity completed.

- Planning and scheduling the social connect.
- Information/Data collected during the social connect.
- Analysis of the information/data and report writing.
- Presentation and interaction.

#### **<u>CIE Rubrics for Evaluation.</u>**

Report	Video presentation	Interaction	Total
10	05	05	20

#### Note:

- Video presentation of **4 to 5 min** in a team to be presented and the same to be uploaded in the department YouTube channel.
- The number of students in each team can be from **4 to 5** members.
- Each activities has to be evaluated on above basis that is [20 * 5 = 100 marks] for final total marks.

**Duration :** A total of 25 - 30 hours engagement per semester is required for the 5th semester of the B.E./B.Tech. program. The students will be divided into groups and each group will be handled by faculty mentor.



#### **Pedagogy – Guidelines:**

# **Special Note: NO SEE – Semester End Exam – Completely Practical and activities based** evaluation

It may differ depending on local resources available for the study as well as environment and climatic differences, location and time of execution.

Sl	Topic	Group	Location	Activity	Reporting	Evaluation
No		size		execution		Of the Topic
1.	Plantatio	May be	Farmers land/ parks /	Site selection	Report should	Evaluation as
	n and	individu	Villages / roadside/	/proper	be submitted by	per the rubrics
	adoption	al or	community area /	consultation/Conti	individual to the	Of scheme
	of a tree:	team	College campus etc	nuous monitoring/	concerned	and syllabus
				Information board	evaluation	by Faculty
					authority	
2.	Heritage	May be	Temples / monumental	Site selection	Report should	Evaluation as
	walk and	individu	places / Villages/ City	/proper	be submitted by	per the rubrics
	crafts	al or	Areas / Grama	consultation/Conti	individual to the	Of scheme
	corner:	team	panchayat/ public	nuous monitoring/	concerned	and syllabus
			associations/Governme	Information board	evaluation	by Faculty
			nt Schemes officers/		authority	
			campus etc			
3.	Organic	May be	Farmers land / parks /	Group selection /	Report should	Evaluation as
	farming	individu	Villages visits /	proper	be submitted by	per the rubrics
	and	al or	roadside/ community	consultation /	individual to the	Of scheme
	waste	team	area / College campus	Continuous	concerned	and syllabus
	manage		etc	monitoring /	evaluation	by Faculty
	ment:			Information board	authority	
4.	Water	May be	Villages/ City Areas /	site selection /	Report should	Evaluation as
	conserva	individu	Grama panchayat/	proper	be submitted by	per the rubrics
	tion:	al or	public	consultation/Conti	individual to the	Of scheme
	&	team	associations/Governme	nuous monitoring/	concerned	and syllabus
	conservat		nt Schemes officers /	Information board	evaluation	by Faculty
	ion		campus etc		authority	
	technique					
	S					
5.	Food	May be	Villages/ City Areas /	Group selection /	Report should	Evaluation as
	walk:	individu	Grama panchayat/	proper	be submitted by	per the rubrics
	Practices	al or	public	consultation /	individual to the	Of scheme
	in	team	associations/Governme	Continuous	concerned	and syllabus
	society		nt Schemes officers/	monitoring /	evaluation	by Faculty
			campus etc	Information board	authority	



	<b>Employability</b> [As per Choice Based	y <b>Enhancement S</b> Credit System (C SEMESTER – V	<b>kills (EES) - V</b> BCS) & OBE Schema '	2]								
Course Co	de:	P21HSMC508	Credits:	01								
Teaching I	Hours/Week (L:T:P):	0:2:0	CIE Marks:	50								
Total Num	ber of Teaching Hours:	28	SEE Marks:	50								
Course Lea • App • Exp solu • Des	arning Objectives: This cours oly programming constructs of olore user-defined data structu- titions to problems. ign and Develop solutions to p	e will enable stude C language to solures like arrays, problems using fun	ents to: ve the real-world pro structures and point actions.	blem. ters in implementing								
	UNIT	– I		10 Hours								
Problem so Flow Cont Examples, Functions: Arrays: An Self-Study	Problem solving through C - Flow Control: Ifelse, for Loop, while Loop, break and continue, switchcase, goto, Control Flow Examples, Simple Programs. Functions: Functions, User-defined Functions, Function Types, Recursion, Storage Class, Programs Arrays: Arrays, Multi-dimensional Arrays, Arrays & Functions, Programs. Self-Study: Variables and constants											
	Self-Study: Variables and constants											
	UNIT -	– II		10 Hours								
Problem so Pointers: F Examples. Strings: St Self-Study	UNIT - olving through C - Pointers, Pointers & Arrays, Po ring Functions, String Example : Evaluation of Expression.	- II binters and Functions, Programs.	ons, Memory Alloca	<b>10 Hours</b> tion, Array & Pointer								
Problem so Pointers: F Examples. Strings: St Self-Study	UNIT - olving through C - Pointers, Pointers & Arrays, Po ring Functions, String Example : Evaluation of Expression. UNIT -	- II Dinters and Functions, Programs. - III	ons, Memory Alloca	10 Hours tion, Array & Pointer 08 Hours								
Problem so Pointers: F Examples. Strings: St Self-Study Problem so	UNIT - olving through C - Pointers, Pointers & Arrays, Po ring Functions, String Example : Evaluation of Expression. UNIT - olving through C -	– II pinters and Functions, Programs. - III	ons, Memory Alloca	10 Hours tion, Array & Pointer 08 Hours								
Problem so Pointers: F Examples. Strings: St Self-Study Problem so Structure a Programm	UNIT - olving through C - Pointers, Pointers & Arrays, Po ring Functions, String Example : Evaluation of Expression. UNIT - olving through C - and Union: Structure, Struct & ing Files: Files Input/output	– II Dinters and Functions es, Programs. - III 2 Pointers, Struct &	ons, Memory Alloca	10 Hours tion, Array & Pointer 08 Hours Programs.								
Problem so Pointers: F Examples. Strings: St Self-Study Problem so Structure a Programm Self-Study	UNIT - olving through C - Pointers, Pointers & Arrays, Po ring Functions, String Example : Evaluation of Expression. UNIT - Olving through C - and Union: Structure, Struct & ing Files: Files Input/output : Error handling during I/O ope	– II Dinters and Functions es, Programs. - III 2 Pointers, Struct & erations.	ons, Memory Alloca	10 Hours tion, Array & Pointer 08 Hours Programs.								
Problem so Pointers: F Examples. Strings: St Self-Study Problem so Structure a Programm Self-Study Course Ou	UNIT - olving through C - Pointers, Pointers & Arrays, Po ring Functions, String Example : Evaluation of Expression. UNIT - Olving through C - and Union: Structure, Struct & ing Files: Files Input/output : Error handling during I/O open atcomes: On completion of this	<ul> <li>II</li> <li>Dinters and Function</li> <li>es, Programs.</li> <li>III</li> <li>Pointers, Struct &amp;</li> <li>erations.</li> <li>s course, students</li> </ul>	ons, Memory Alloca & Function, Unions, T are able to:	10 Hours tion, Array & Pointer 08 Hours Programs.								
Problem so Pointers: H Examples. Strings: St Self-Study Problem so Structure a Programm Self-Study Course Ou CO – 1:	UNIT - olving through C - Pointers, Pointers & Arrays, Po ring Functions, String Example : Evaluation of Expression. UNIT - olving through C - and Union: Structure, Struct & ing Files: Files Input/output : Error handling during I/O ope atcomes: On completion of this Apply suitable programming of	<ul> <li>II</li> <li>Dinters and Function</li> <li>es, Programs.</li> <li>III</li> <li>Pointers, Struct &amp;</li> <li>erations.</li> <li>s course, students</li> <li>constructs of C lar</li> </ul>	ons, Memory Alloca & Function, Unions, are able to: nguage to solve the g	10 Hours         tion, Array & Pointer         08 Hours         Programs.         iven problem.								
Problem so Pointers: H Examples. Strings: St Self-Study Problem so Structure a Programm Self-Study Course Ou CO – 1: CO – 2:	UNIT - olving through C - Pointers, Pointers & Arrays, Po ring Functions, String Example : Evaluation of Expression. UNIT - olving through C - and Union: Structure, Struct & ing Files: Files Input/output : Error handling during I/O ope atcomes: On completion of this Apply suitable programming Explore user-defined data str like searching and sorting.	<ul> <li>II</li> <li>Dinters and Function</li> <li>es, Programs.</li> <li>III</li> <li>Pointers, Struct &amp;</li> <li>erations.</li> <li>s course, students</li> <li>constructs of C lar</li> <li>ructures like array</li> </ul>	ons, Memory Alloca & Function, Unions, are able to: nguage to solve the g	10 Hours         tion, Array & Pointer         08 Hours         Programs.         iven problem.         solutions to problems								



#### **Text Book(s):**

- 1. The C Programming Language (2nd edition) by Brian Kernighan and Dennis Ritchie.
- 2. C in Depth by S K Srivastava and Deepali Srivastava.
- 3. Computer fundamentals and programming in c, "Reema Thareja", Oxford University, Second edition, 2017.

#### **Reference Book(s):**

1. E. Balaguruswamy, Programming in ANSI C, 7th Edition, Tata McGraw-Hill. Brian W. Kernighan and Dennis M. Ritchie, The 'C' Programming Language, Prentice Hall of India.

#### Web and Video link(s):

1. Problem Solving through Programming in C https://archive.nptel.ac.in/courses/106/105/106105171/

CC	DURSE	ARTI	CULA	TION	MAT	<b>RIX</b> []	Emplo	yability	Enhan	cement	Skills (EF	ES) - V]
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2	2	2	-	-	-	-	-	-	-	-	-
CO-2	2	2	2	-	-	-	-	-	-	-	-	-
CO-3	2	2	1	-	-	-	-	-	-	-	-	-

**Department of Mechanical Engineering** 

**DESIGN OF MACHINE ELEMENTS-II** [As per Choice Based Credit System (CBCS) & OBE Scheme] **SEMESTER – VI** 

L-T-P: 2-2-0

Exam: 3 Hrs. Weightage: CIE: 50 %;

Design data hand book:

Self study component: Properties of sliding contact bearing materials.

ge in springs, buckning in compression spring.
UNIT-II
ds: Introduction, thick cylindrical shells subjected to internal and external as, compound cylinders, stresses due to different types of fits, autofrettage,
overplates.
8 Hrs
dy of Barlow's, Birnie's and Clavarino's equation
UNIT-III
spur gears- terminology, standard proportions of gear systems, stresses in gear form factor, design for spur gears based on strength, dynamic load and wear nology, formative number of teeth, design of bevel gears based on strength, Fault detection of gear using signal processing technique and machine learning
8 Hrs
uses of Gear tooth failure, Effect of material defects on gear functioning.
UNIT-IV
duction, types of clutches, design of Clutches (single plate and multi plate een single and multi plate clutches. <b>Brakes-</b> Types, energy absorption, heat e block brakes and simple band brakes. Safety issues in brakes.

appropriate materials, consideration of functional requirements, adherence to design standards and safety factors. Develop a comprehensive understanding of machine elements used in various mechanical systems such as

Learn and apply systematic design methodologies for machine elements, including the selection of

curved beams, cylinders, gears, bearings and springs.

#### **Course Content UNIT-I**

Curved Beams: Introduction, stresses in curved beams, design of curved beams. Springs: Introduction, types of springs, terminology, stresses and deflection in helical coil springs of circular and non-circular cross sections, springs under fluctuating loads, Leaf Springs, stresses in leaf springs, equalized stresses, length of spring leaves. 8 Hrs

Self study component: Surge in springs, buckling in compression spring

Cylinders & cylinder hea ternal pressure, Lame's Equation ettage, circular and rectangular co

#### Self study component: Stu

Spur Gears: Introduction, n gear tooth, Lewi's equation and wear load. Bevel Gears- termin ength, dynamic and wears loads. F arning approach.

### Self study component: Car

Clutches & Brakes: Introplate clutches). Difference betwe , heat dissipation. Design of single

8 Hrs

**Self study component:** Thermal rating of worm Gearing, Working of Centrifugal clutch.

#### **UNIT-V**

Lubrication and Bearings: Introduction, principle of hydrodynamic lubrication, assumptions in hydrodynamic lubrication, bearing characteristic number and modulus, Summerfield number, coefficient of friction, power loss, heat generation and heat dissipation, Design of journal bearings. Fault detection of bearing using signal processing technique and machine learning approach.

K. Mahadevan and Balaveera Reddy, "Design Data Hand Book", CBS Publication, 4th Edition, 2013,

8 Hrs



Course Code: P21ME601

**Contact Period-Lecture: 40 Hrs. Course Learning Objectives:** The objectives of this course are to, Credits: 03

**SEE: 50%** 



#### ISBN: 978-8123923154.

#### Text Books

V. B. Bhandari, "**Design of Machine Elements**", Tata McGraw Hill Publishing Company Ltd., New Delhi, 4th Edition 2016, ISBN: 9789339221126.

R S Khurmi & J K Gupta, Publisher: **"Design of Machine Elements"**, 34th Revised edition, S Chand Publications, ISBN:9788121925372.

#### **Reference Books**

K. Raghavendra, **"Design of Machine Elements II"**, 1st edition CBS publishers and distributors Pvt. Ltd., ISBN: 978-81-239-2633-9.

Budynas, Richard G. (Richard Gordon), "Shigley's mechanical engineering design" 9th Edition. McGraw-Hill series in mechanical engineering, ISBN 978-0-07-352928-8.

#### e-Resources

https://www.youtube.com/watch?v=eG3THCih3II

https://www.youtube.com/watch?v=7EtF7AowZqk&list=PLOiT2XTdTTBd0htcmHydMoekittqX5-F2 https://www.youtube.com/watch?v=AS0zQhMfJUw&list=PLSGws_74K01_e499POG3gczxcnlJEHMWE. https://www.youtube.com/watch?v=vyRc92-mySc&list=PLH1r3LGlktds-TCu7rJaZqYr3hfqA3CSu.

https://www.youtube.com/watch?v=Fm5aChFkXJQ

https://www.youtube.com/watch?v=64EfZpMuOho

https://www.sciencedirect.com/science/article/pii/S2215098621001695

https://link.springer.com/chapter/10.1007/978-981-15-5693-7_28

https://www.emerald.com/insight/content/doi/10.1108/JQME-11-2015-0058/full/html

**urse Outcomes:** At the end of the course, students will be able to;

**Apply** the basic concepts of materials engineering to design cylinders, springs, gears, clutches and brakes. **Apply** the Lame's theorem, Lewi's form factor for **designing** cylinders and gears respectively.

Analyze the stresses induced in beams, cylinders and gears for designing a sustainable mechanical component

Analyze the tribological characteristics to design the clutches, brakes and bearings.

		Cou	rse Articula	tion Matrix															
Course	Jutaamaa					I	Pro	ogr	aı	n (	Du	ıtc	on	ne	S			PSO	
Course	Jutcomes				1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2	
CO1	Apply the basic c design cylinders, sp	oncepts of 1 rings, gears, c	naterials eng	gineering to brakes.	3					1								1	
CO2	Apply the Lame's designing cylinders	theorem, l and gears res	Lewi's form spectively.	factor for	3		2												
CO3	Analyze the stress gears for designing	es induced i a sustainable	n beams, cy mechanical	linders and component.		2	3												
CO4	Analyze the tribol clutches, brakes and	ogical chara bearings.	cteristics to	design the		2	3											1	
		SEE-	Course Ass	essment Pla	n														
COs		Marks Di	stribution						ŗ	Го	tal	l		<b>X X</b> 7		~h	tor	(0/)	
	Unit I	Unit II	Unit III	Unit IV	U	ni	t V	7	N	<b>I</b> a	rk	S		vv	eiş	311	ιaε	ge (70)	
CO1	2	2	2	2		2				1(	)					1	0%	)	
CO2	9	9	9							2	7					2	7%	)	
CO3	9	9	9							2	7					2	7%	)	
CO4	04 9+9					9+	9			30	5					3	6%	)	
	20	20	20	20		20	)			10	0					10	)0%	6	
		Applicati	on $= 37\%$ ,	Analysis =	63	3%													
	COM	<b>IPUTER IN</b>	TEGRATEI	D MANUFA	C	T	JR	IN	G										

[As per Choice Based Credit System (CBCS) & OBE Scheme]



Course Code: P21ME6021         L-T-P: 3-0-0         Credits: 03           Contact Period - Lecture: 40Hrs, Exam: 3Hrs.         Weightage: CIE:50%; SEE:50%         SEE:50%           Course Learning Objectives:         The objectives of this course are to, Understand the concepts of CAD and CAM.         Recognize the importance of automation and additive manufacturing techniques in industries.           Write the CNC programming using G codes and M codes.         Course Content         Course Content           UNIT-I         Introduction System, classification of production systems, automation, types of automation, Introduction to CIM, evolution of CIM, scope of CAD/CAM and CIM, production concepts – cycle time, production time and production rate, plant capacity, utilization and availability, manufacturing lead time, work-in-progress, WIP and TIP ratio. Numerical.         8 Hrs           Self Study Component: Advantages and Limitations of Automation.         8 Hrs           Software configuration, Inductions of graphics package, constructing the geometry. Computerized Manufacture Planning and Control System: Computer aided process planning, retrieval and generative systems, benefits of CAPP, production planning and control systems.         8 Hrs           Soft-Study Component: Standardization of Graphics.         8 Hrs           Completering Variang and terrieval systems. Additive Manufacturing Techniques; Introduction to AM, M evolution, Steps in AM, Classification of AM processe, advantage, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (PDM).         8 Hrs           Se	SEMESTER -	- VI	
Contact Period - Lecture: 40Hrs. Exam: 3Hrs.         Weightage: CIE:50%;         SEE:50%           Course Learning Objectives:         The objectives of this course are to, Understand the concepts of CAD and CAM. Recognize the importance of automation and additive manufacturing techniques in industries. Write the CNC programming using G codes and M codes.           Course Content         Course Content           UNT-I         Introduction System, classification of production systems, automation, types of automation, Introduction to CIM, evolution of CIM, scope of CAD/CAM and CIM, production conceptscycle time, work-in-progress, WIP and TIP ratio. Numerical.         8 Hrs           Self Study Component: Advantages and Limitations of Automation.         8 Hrs           Self Study Component: Advantages and Limitations of Automation.         8 Hrs           Self Study Component: Advantages and Limitations of Automation.         8 Hrs           Self Study Component: Standardization of Graphics.         8 Hrs           Self Study Component: Standardization of System, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage on in AM, Classification of AM processe, ad	Course Code: P21ME6021	L-T-P: 3-0-0	Credits: 03
Course Learning Objectives: The objectives of this course are to, Understand the concepts of CAD and CAM. Recognize the importance of automation and additive manufacturing techniques in industries. Write the CNC programming using G codes and M codes. Course Content UNIT-I Introduction: Production System, classification of production systems, automation, types of automation, Introduction to CIM, evolution of CIM, scope of CAD/CAM and CIM, production concepts – cycle time, production time and production rate, plant capacity, utilization and availability, manufacturing lead time, work-in-progress, WIP and TIP ratio. Numerical. 8 Hrs Self Study Component: Advantages and Limitations of Automation. UNIT-II CAD and Computer Graphics Software: The design process, applications of computers in design, software configuration, functions of graphics package, constructing the geometry. Computerized systems, benefits of CAPP, production planning and control systems. 8 Hrs Self -Study Component: Standardization of Graphics. 8 Hrs Self -Study Component: Standardization of Graphics. 8 Hrs Self -Study Component: Standardization of Graphics. 8 Hrs Self -Study Component: Standardization of Strem: Computer aided process planning, retrieval and generative systems, benefits of CAPP, production planning and control systems. 8 Hrs Self -Study Component: Standardization of Graphics. 8 Hrs Self -Study Component: Distinction between AM & CNC machining. UNIT-IU Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, co- ordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple component: Feedback devices, Axes-standards. 8 Hrs Self Study Component: Feedback devices, Axes-standards. 8 Hrs Self Study Component: Study 4.0, functions and benefits. Components of Industry 4.0, Internet of Things (10-1), To Tapplications in manufactu	Contact Period - Lecture: 40Hrs. Exam: 3Hrs.	Weightage: CIE:50%;	SEE:50%
The objectives of this course are to, Understand the concepts of CAD and CAM. Recognize the importance of automation and additive manufacturing techniques in industries. Write the CNC programming using G codes and M codes. <b>Course Content</b> UNIT-I Introduction to CIM, evolution of CIN, scope of CAD/CAM and CIM, production concepts – cycle time, production time and production rate, plant capacity, utilization and availability, manufacturing lead time, work-in-progress, WIP and TIP ratio. Numerical. <b>8 Hrs</b> <b>Self Study Component:</b> Advantages and Limitations of Automation. <b>8 Hrs</b> <b>Self Study Component:</b> Standardization of Graphics. <b>8 Hrs</b> <b>Self Study Component:</b> Standardization of Graphics. <b>8 Hrs</b> <b>Self Study Component:</b> Standardization of Graphics. <b>9 Hrs</b> <b>9 Hexible Manufacturing Systems:</b> Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to <b>9 AM</b> , AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM). <b>8 Hrs</b> <b>8 Self Study Component:</b> Distinction between AM & CNC machining. <b>10 NUT -11</b> <b>10 Numerical Control and CNC Machine Tools:</b> Basic components of NC Systems, NC procedure, co- ordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, progr	Course Learning Objectives:		
Understand the concepts of CAD and CAM. Recognize the importance of automation and additive manufacturing techniques in industries. Write the CNC programming using G codes and M codes. Course Content UNIT-I Introduction: Production System, classification of production systems, automation, types of automation, Introduction to CIM, evolution of CIM, scope of CAD/CAM and CIM, production concepts – cycle time, production time and production rate, plant capacity, utilization and availability, manufacturing lead time, work-in-progress, WIP and TIP ratio. Numerical. 8 Hrs Self Study Component: Advantages and Limitations of Automation. 8 Hrs Self Study Component: Advantages and Limitations of Automation. 8 Hrs Self Study Component: Advantages and Eimitations of Automation. 8 Hrs Self Study Component: Advantages and Computer alided process planning, retrieval and generative systems, benefits of CAPP, production planning and control systems. 8 Hrs 8 Self -Study Component: Standardization of Graphics. 8 Hrs 8 Self -Study Component: Standardization of Graphics. 8 Hrs 8 Self -Study Component: Standardization of Graphics. 8 Hrs 8 Self -Study Component: Standardization of All processes, advantages, disadvantages and applications of AA, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM). 8 Self -Study Component: Distinction between AM & CNC machining. 8 Hrs 8 Self -Study Component: Distinction between AM & CNC machining. 8 Hrs 8 Self Study Component: Distinction between AM & CNC machining. 8 Hrs 8 Self Study Component: Feedback devices, Axes-standards. 8 Hrs 8 Self Study Component: Feedback devices, Axes-standards. 8 Hrs 8 Self Study Component: Feedback devices, Axes-standards. 8 Hrs 8 Self Study Component: Reduction production systems and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance. 8 Hrs 8 Self Study Component: supply chain optimization, supply-chain & logistics. 7 TAT A McGraw-Hill, 4th Edition, 2015	The objectives of this course are to,		
Recognize the importance of automation and additive manufacturing techniques in industries. Write the CNC programming using G codes and M codes. Course Content UNIT-1 Introduction System, classification of production systems, automation, types of automation, Introduction to CIM, evolution of CIM, scope of CAD/CAM and CIM, production concepts – cycle time, production time and production rate, plant capacity, utilization and availability, manufacturing lead time, work-in-progress, WIP and TIP ratio. Numerical. 8 Hrs Self Study Component: Advantages and Limitations of Automation. 8 Hrs Self Study Component: Standardization of Graphics. 8 Hrs Self Study Component: Standardization of Graphics. 8 Hrs Self Study Component: Standardization of Graphics. 8 Hrs Self -Study Component: Standardization of Automatians, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM. Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM). 8 Hrs Self -Study Component: Distinction between AM & CNC maching. UNIT-IV Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, co- ordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple component: in turning, drilling and milling systems. 8 Hrs Self Study Component: reedback devices, Axes-standards. 10 UTT-V Numerical Control and CNC Machine Tools: Basic components of Industry 4.0, Internet of Things (loT), IoT applications in manufacturing, Big-Data and Cloud Co	Understand the concepts of CAD and CAM.		
Write the CNC programming using G codes and M codes.         Course Content         UNT-I         Introduction: Production System, classification of production systems, automation, types of automation, Introduction time and production rate, plant capacity, utilization and availability, manufacturing lead time, work-in-progress, WIP and TIP ratio. Numerical.       8 Hrs         Self Study Component: Advantages and Limitations of Automation.       8 Hrs         Self Study Component: Advantages and Limitations of Automation.       8 Hrs         CAD and Computer Graphics Software: The design process, applications of computers in design, software configuration, functions of graphics package, constructing the geometry. Computerized Manufacture Planning and Control System: Computer aided process planning, retrieval and generative systems, benefits of CAPP, production planning and control systems.       8 Hrs         Self -Study Component: Standardization of Graphics.       8 Hrs         UNIT-II         Flexible Manufacturing Systems: Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Systems, Stadwantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM).         Self -Study Component: Distinction between AM & CNC maching.         UNIT-IV         Nu	Recognize the importance of automation and additive r	nanufacturing techniques in	industries.
Course Content UNIT-1           UNIT-1           Introduction: Production System, classification of production systems, automation, types of automation, Introduction to CIM, evolution of CIM, scope of CAD/CAM and CIM, production concepts – cycle time, production time and production rate, plant capacity, utilization and availability, manufacturing lead time, work-in-progress, WIP and TIP ratio. Numerical.         8 Hrs           Self Study Component: Advantages and Limitations of Automation.         8 Hrs           Software configuration, functions of graphics package, constructing the geometry. Computerized Manufacture Planning and Control System: Computer aided process planning, retrieval and generative systems, benefits of CAPP, production planning and control systems.         8 Hrs           Self Study Component: Standardization of Graphics.         8 Hrs           Components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing cues: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM).         8 Hrs           Self Study Component: Distinction between AM & CNC machining.         8 Hrs           VINT-IV         Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, co- ordinate system, open loop & closed loop system, NC moton control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple component: in turning, dri	Write the CNC programming using G codes and M co	des.	
UNIT-I Introduction: Production System, classification of production systems, automation, types of automation, Introduction to CIM, evolution of CIM, scope of CAD/CAM and CIM, production concepts – cycle time, production time and production rate, plant capacity, utilization and availability, manufacturing lead time, work-in-progress, WIP and TIP ratio. Numerical. 8 Hrs Self Study Component: Advantages and Limitations of Automation. 0 UNIT-II CAD and Computer Graphics Software: The design process, applications of computers in design, software configuration, functions of graphics package, constructing the geometry. Computerized Manufacture Planning and Control System: Computer aided process planning, retrieval and generative systems, benefits of CAPP, production planning and control systems. 8 Hrs Self -Study Component: Standardization of Graphics. 0 UNIT-II Flexible Manufacturing Systems: Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM). 8 Hrs Self -Study Component: Distinction between AM & CNC machining. 0 UNIT-IV Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, co- ordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple component: in urming, drilling and milling systems. 8 Hrs Self Study Component: Stendardization, supply-chain & logistics. 7 Ext Books 1 Ext Books 1 Ext Books 1 Ext Books 1 Ext Books 2 Ext Solut Component: Supply chain optimization, supply-chain & logistics. 2 Ext Books 2 Ext Component: Supply chain optimizat	Course Cont	ent	
Introduction: Production System, classification of production systems, automation, types of automation, Introduction to CIM, evolution of CIM, scope of CAD/CAM and CIM, production concepts – cycle time, production time and production rate, plant capacity, utilization and availability, manufacturing lead time, work-in-progress, WIP and TIP ratio. Numerical. 8 Hrs Self Study Component: Advantages and Limitations of Automation. UNIT-II CAD and Computer Graphics Software: The design process, applications of computers in design, software configuration, functions of graphics package, constructing the geometry. Computerized Manufacture Planning and Control System: Computer aided process planning, retrieval and generative systems, benefits of CAPP, production planning and control systems. 8 Hrs Self-Study Component: Standardization of Graphics. 9 UNIT-III Flexible Manufacturing Systems: Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM). 8 Hrs Self -Study Component: Distinction between AM & CNC machining. 9 UNIT-IV Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, co- ordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple component: in turning, drilling and milling systems. 8 Hrs Self Study Component: reedback devices, Axes-standards. 8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. 7 Text Books Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4t	UNIT-I		
Introduction to CIM, evolution of CIM, scope of CAD/CAM and CIM, production concepts – cycle time, production time and production rate, plant capacity, utilization and availability, manufacturing lead time, work-in-progress, WIP and TIP ratio. Numerical. <b>8 Hrs</b> Self Study Component: Advantages and Limitations of Automation. UNIT-II CAD and Computer Graphics Software: The design process, applications of computers in design, software configuration, functions of graphics package, constructing the geometry. Computerized Manufacture Planning and Control System: Computer sided process planning, retrieval and generative systems, benefits of CAPP, production planning and control systems. <b>8 Hrs</b> Self -Study Component: Standardization of Graphics. UNIT-III Flexible Manufacturing Systems: Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM). <b>8 Elf -Study Component:</b> Distinction between AM & CNC machining. <b>10 UNIT-IV</b> Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, co- ordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple component: Feedback devices, Axes-standards. <b>10 UNIT-V</b> Future of Automated Factory: Industry 4.0, functions and benefits. Components of Industry 4.0, Internet of Things (IoT), IoT applications in manufacturing, Big-Data and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance. <b>8 Hrs</b> Self Study Component: supply chain optimization, supply-chain & logistics. <b>17 ext Books</b>	Introduction: Production System, classification of produ-	ction systems, automation,	types of automation,
production time and production rate, plant capacity, utilization and availability, manufacturing lead time, work-in-progress, WIP and TIP ratio. Numerical. 8 Hrs Self Study Component: Advantages and Limitations of Automation. UNIT-II CAD and Computer Graphics Software: The design process, applications of computers in design, software configuration, functions of graphics package, constructing the geometry. Computerized Manufacture Planning and Control System: Computer aided process planning, retrieval and generative systems, benefits of CAPP, production planning and control systems. 8 Hrs Self -Study Component: Standardization of Graphics. UNIT-III Flexible Manufacturing Systems: Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM). 8 Hrs Self -Study Component: Distinction between AM & CNC machining. UNIT-IV Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, co- ordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of simple components in turning, drilling and milling systems. 8 Hrs Self Study Component: Feedback devices, Axes-standards. 8 Hrs Self Study Component: Feedback devices, Axes-standards. 8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. 7 Ext Books Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN: 0070482934 Reference Books Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill Ath Edition, 2015, ISBN: 00706343437	Introduction to CIM, evolution of CIM, scope of CAD/CA	AM and CIM, production co	oncepts – cycle time,
work-in-progress, WIP and TIP ratio. Numerical. 8 Hrs Self Study Component: Advantages and Limitations of Automation. UNIT-II CAD and Computer Graphics Software: The design process, applications of computers in design, software configuration, functions of graphics package, constructing the geometry. Computerized Manufacture Planning and Control System: Computer aided process planning, retrieval and generative systems, benefits of CAPP, production planning and control systems. 8 Hrs Self -Study Component: Standardization of Graphics. 8 Hrs Self -Study Component: Standardization of Graphics. 9 UNIT-II 1 Tlexible Manufacturing Systems: Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM). 8 Hrs Self -Study Component: Distinction between AM & CNC machining. 1 UNIT-IV Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, co- ordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC-CNC programming, manual part programming, G Codes, M Codes, programming of simple component: Feedback devices, Axes-standards. 1 UNIT-V Future of Automated Factory: Industry 4.0, functions and benefits. Components of Industry 4.0, Internet of Things (IoT), IoT applications in manufacturing, Big-Data and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance. 8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. 1 Ext Books 1 Kikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill Ath Edition, 2015, ISBN: 00706343437 2 Keirence	production time and production rate, plant capacity, utiliz	ation and availability, man	ufacturing lead time,
8 Hrs         Self Study Component: Advantages and Limitations of Automation.         UNIT-II         CAD and Computer Graphics Software: The design process, applications of computers in design, software configuration, functions of graphics package, constructing the geometry. Computerized Manufacture Planning and Control System: Computer aided process planning, retrieval and generative systems, benefits of CAPP, production planning and control systems.       8 Hrs         Self -Study Component: Standardization of Graphics.       8 Hrs         UNIT-III         Flexible Manufacturing Systems: Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM).         Self -Study Component: Distinction between AM & CNC machining.         UNIT-IV         Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, coordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple component: Feedback devices, Axes-standards.         UNIT-V         Future of Automated Factory: Industry 4.0, functions and benefits. Components of Industry 4.0, Internet of Thing	work-in-progress, WIP and TIP ratio. Numerical.		
UNIT-II         UNIT-II         CAD and Computer Graphics Software: The design process, applications of computers in design, software configuration, functions of graphics package, constructing the geometry. Computerized Manufacture Planning and Control System: Computer aided process planning, retrieval and generative systems, benefits of CAPP, production planning and control systems.         Self -Study Component: Standardization of Graphics.         UNIT-III         Flexible Manufacturing Systems: Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM).         Self -Study Component: Distinction between AM & CNC machining.         UNIT-IV         Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, coordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of SU, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple component: neuring, drilling and milling systems.         Self Study Component: Feedback devices, Axes-standards.         UNIT-V         Fu			8 Hrs
CAD and Computer Graphics Software: The design process, applications of computers in design, software configuration, functions of graphics package, constructing the geometry. Computerized Manufacture Planning and Control System: Computer aided process planning, retrieval and generative systems, benefits of CAPP, production planning and control systems. 8 Hrs Self -Study Component: Standardization of Graphics. 9 Home States and retrieval systems: Additive Manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM). 8 Hrs Self -Study Component: Distinction between AM & CNC machining. 9 Hrs Self -Study Component: Distinction between AM & CNC machining. 9 Hrs Self Study Component: Feedback devices, Axes-standards. 9 Hrs Self Study Component: Feedback devices, Axes-standards. 9 Hrs Self Study Component: Feedback devices, Axes-standards. 9 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. 7 Hrs. 8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. 7 Hrs. 9 Hrs. 7 Hordoraw-Hill, 4th Edition, 2015 ISBN: 0070482934 Reference Books 7 Hordoraw-Hill 3rd Edition, 2015 ISBN: 00706343437 1 Hordoraw-Hill 3rd Edition, 2015 ISBN: 00706343437 1 Hordoraw-Hill 4th Edition, CAM, Tata McGraw Hill. 4th Edition, 2015, ISBN: 00706343437 1 Hordoraw-Hill 4th Edition, 2015 (Sage Hill 4th Edition, 2015, ISBN: 00706343437 1 Hordoraw-Hi	Self Study Component: Advantages and Limitations of A	utomation.	
CAD and Computer Graphics Software: The design process, applications of computers in design, software configuration, functions of graphics package, constructing the geometry. Computerized Manufacture Planning and Control System: Computer aided process planning, retrieval and generative systems, benefits of CAPP, production planning and control systems. 8 Hrs Self -Study Component: Standardization of Graphics. 10 NIT-III Flexible Manufacturing Systems: Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM). 8 Hrs Self -Study Component: Distinction between AM & CNC machining. 10 NIT-IV Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, co-ordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple component: Feedback devices, Axes-standards. 10 NIT-V Surface of Automated Factory: Industry 4.0, functions and benefits. Components of Industry 4.0, Internet of Things (IoT), IoT applications in manufacturing, Big-Data and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance. 8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. 17 NA McGraw-Hill, 4th Edition, 2015, ISBN: 00706343437.	UNIT-II CAD and Community Complian Softeness. The design		
software computation, functions of graphics package, constructing the geometry. Computerized Manufacture Planning and Control System: Computer aided process planning, retrieval and generative systems, benefits of CAPP, production planning and control systems. 8 Hrs Self -Study Component: Standardization of Graphics. UNIT-III Flexible Manufacturing Systems: Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM). 8 Hrs Self -Study Component: Distinction between AM & CNC machining. UNIT-IV Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, co- ordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple component: Inturning, drilling and milling systems. 8 Hrs Self Study Component: Feedback devices, Axes-standards. 8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. Text Books Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN: 13: 978-0-13-349961-2. P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 00706343437	CAD and Computer Graphics Software: The design	process, applications of c	omputers in design,
Namuature in animg and control system. Computer added process plaining, refreval and generative systems, benefits of CAPP, production planning and control systems.       8 Hrs         Self -Study Component: Standardization of Graphics.       8 UNIT-III         Flexible Manufacturing Systems: Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM).         Self -Study Component: Distinction between AM & CNC machining.       8 Hrs         VINIT-IV       Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, coordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple component: Feedback devices, Axes-standards.       8 Hrs         Self Study Component: Feedback devices, Axes-standards.       8 Hrs         Self Study Component: supply chain optimization, supply-chain & logistics.       8 Hrs         Self Study Component: supply chain optimization, supply-chain & logistics.       8 Hrs         Self Study Component: supply chain optimization, supply-chain & logistics.       8 Hrs         Self Study Component: supply chain optimization, supply-chain & logistics.       7 Hrs	Manufacture Planning and Control System: Computer	aided process planning rati	rioval and ganarativa
Systems, benches of CATT, production praining and control systems.         Self -Study Component: Standardization of Graphics.         UNIT-III         Flexible Manufacturing Systems: Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM).         Self -Study Component: Distinction between AM & CNC machining.         UNIT-IV         Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, coordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple component: Feedback devices, Axes-standards.         UNIT-V         Future of Automated Factory: Industry 4.0, functions and benefits. Components of Industry 4.0, Internet of Things (IoT), IoT applications in manufacturing, Big-Data and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance.         Self Study Component: supply chain optimization, supply-chain & logistics.         Text Books         Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill	systems benefits of CAPP, production planning and control	alueu process plaining, leu	lieval allu gellerative
Self -Study Component: Standardization of Graphics. UNIT-III Flexible Manufacturing Systems: Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM). 8 Hrs Self -Study Component: Distinction between AM & CNC machining. UNIT-IV Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, co- ordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple component: Feedback devices, Axes-standards. 8 Hrs Self Study Component: Feedback devices, Axes-standards. 8 Hrs Self Study Component: Feedback devices, Axes-standards. 8 Hrs Self Study Component: sin manufacturing, Big-Data and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance. 8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. Text Books Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2. P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 0070482934 Reference Books Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition, 2015, ISBN: 00706343437	systems, benefits of CALL, production planning and control	n systems.	8 Hrs
UNIT-III Flexible Manufacturing Systems: Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM). 8 Hrs Self -Study Component: Distinction between AM & CNC machining. UNIT-IV Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, co- ordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple component: Feedback devices, Axes-standards. UNIT-V Future of Automated Factory: Industry 4.0, functions and benefits. Components of Industry 4.0, Internet of Things (IoT), IoT applications in manufacturing, Big-Data and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance. 8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. Text Books Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2. P N Rao, "CAD / CAM" Tata McGraw Hill. 4th Edition, 2015, ISBN: 00706343437	Self -Study Component: Standardization of Graphics.		0 1115
Flexible Manufacturing Systems: Fundamentals of flexible manufacturing systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, FMS planning and design issues, automated storage and retrieval systems. Additive Manufacturing Techniques: Introduction to AM, AM evolution, Steps in AM, Classification of AM processes, advantages, disadvantages and applications of AM, Working principle of Stereo-lithography (SL) and Fused Deposition Modeling (FDM). 8 Hrs Self -Study Component: Distinction between AM & CNC machining. 10 NIT-IV Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, coordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple component: Feedback devices, Axes-standards. 10 NIT-V Future of Automated Factory: Industry 4.0, functions and benefits. Components of Industry 4.0, Internet of Things (IoT), IoT applications in manufacturing, Big-Data and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance. 8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. Text Books Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2. P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 00706343437	UNIT-III		
Self -Study Component: Distinction between AM & CNC machining. UNIT-IV Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, co- ordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple components in turning, drilling and milling systems. 8 Hrs Self Study Component: Feedback devices, Axes-standards. UNIT-V Future of Automated Factory: Industry 4.0, functions and benefits. Components of Industry 4.0, Internet of Things (IoT), IoT applications in manufacturing, Big-Data and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance. 8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. Text Books Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2. P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 0070482934 Reference Books Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition, 2015, ISBN: 00706343437	<b>Flexible Manufacturing Systems:</b> Fundamentals of flexific components, Material handling and storage system, applications, automated storage and retrieval systems. <b>Additiv</b> AM, AM evolution, Steps in AM, Classification of A applications of AM, Working principle of Stereo-lithograph	ble manufacturing systems, plications, benefits, FMS p e Manufacturing Techniq AM processes, advantages, hy (SL) and Fused Deposition	types of FMS, FMS planning and design <b>ues:</b> Introduction to disadvantages and on Modeling (FDM). <b>8 Hrs</b>
UNIT-IV         Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, co- ordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple components in turning, drilling and milling systems.         8 Hrs         Self Study Component: Feedback devices, Axes-standards.         UNIT-V         Future of Automated Factory: Industry 4.0, functions and benefits. Components of Industry 4.0, Internet of Things (IoT), IoT applications in manufacturing, Big-Data and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance.         Self Study Component: supply chain optimization, supply-chain & logistics.         Text Books         Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2.         P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 0070482934         Reference Books         Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition, 2015, ISBN: 00706343437	Self -Study Component: Distinction between AM & CNC	machining.	
Numerical Control and CNC Machine Tools: Basic components of NC Systems, NC procedure, co- ordinate system, open loop & closed loop system, NC motion control system, advantage & limitations of NC, application of NC.CNC programming, manual part programming, G Codes, M Codes, programming of simple components in turning, drilling and milling systems.         8 Hrs         Self Study Component: Feedback devices, Axes-standards.         UNIT-V         Future of Automated Factory: Industry 4.0, functions and benefits. Components of Industry 4.0, Internet of Things (IoT), IoT applications in manufacturing, Big-Data and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance.         Self Study Component: supply chain optimization, supply-chain & logistics.         Text Books         Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2.         P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 00706343437         Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition,2015, ISBN: 00706343437	UNIT-IV	omenones of NC Systems	NC massadure as
of simple components in turning, drilling and milling systems.  8 Hrs Self Study Component: Feedback devices, Axes-standards.  UNIT-V Future of Automated Factory: Industry 4.0, functions and benefits. Components of Industry 4.0, Internet of Things (IoT), IoT applications in manufacturing, Big-Data and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance.  8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics.  Text Books  Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2. P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 0070482934  Reference Books Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition, 2015, ISBN: 00706343437	ordinate system, open loop & closed loop system, NC mc NC, application of NC.CNC programming, manual part p	otion control system, advant rogramming, G Codes, M (	age & limitations of Codes, programming
8 Hrs Self Study Component: Feedback devices, Axes-standards. UNIT-V Future of Automated Factory: Industry 4.0, functions and benefits. Components of Industry 4.0, Internet of Things (IoT), IoT applications in manufacturing, Big-Data and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance. 8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. Text Books Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2. P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 0070482934 Reference Books Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition,2015, ISBN: 00706343437	of simple components in turning, drilling and milling syste	ms.	
Self Study Component: Feedback devices, Axes-standards. UNIT-V Future of Automated Factory: Industry 4.0, functions and benefits. Components of Industry 4.0, Internet of Things (IoT), IoT applications in manufacturing, Big-Data and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance. 8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. Text Books Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2. P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 0070482934 Reference Books Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition, 2015, ISBN: 00706343437			8 Hrs
UNIT-V Future of Automated Factory: Industry 4.0, functions and benefits. Components of Industry 4.0, Internet of Things (IoT), IoT applications in manufacturing, Big-Data and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance. 8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. Text Books Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2. P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 0070482934 Reference Books Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition,2015, ISBN: 00706343437	Self Study Component: Feedback devices, Axes-standard	S	
Future of Automated Factory: Industry 4.0, functions and benefits. Components of Industry 4.0, Internet of Things (IoT), IoT applications in manufacturing, Big-Data and Cloud Computing for IoT, IoT for smart manufacturing, influence of IoT on predictive maintenance. 8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. Text Books Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2. P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 0070482934 Reference Books Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition, 2015, ISBN: 00706343437	UNIT-V		
8 Hrs Self Study Component: supply chain optimization, supply-chain & logistics. Text Books Mikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2. P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 0070482934 Reference Books Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition, 2015, ISBN: 00706343437	<b>Future of Automated Factory</b> : Industry 4.0, functions an of Things (IoT), IoT applications in manufacturing, Big-D manufacturing, influence of IoT on predictive maintenance	d benefits. Components of 1 ata and Cloud Computing for	Industry 4.0, Internet or IoT, IoT for smart
Self Study Component: supply chain optimization, supply-chain & logistics.Text BooksMikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2. P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 0070482934Reference BooksZeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition, 2015, ISBN: 00706343437			8 Hrs
Text BooksMikell P Groover, "Automation, Production Systems and Computer-Integrated Manufacturing", TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2. P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 0070482934Reference BooksZeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition, 2015, ISBN: 00706343437	Self Study Component: supply chain optimization, supply	-chain & logistics.	
Mikell P Groover, <b>"Automation, Production Systems and Computer-Integrated Manufacturing"</b> , TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2. P N Rao, <b>"CAD / CAM"</b> Tata McGraw-Hill 3rd Edition, 2015 ISBN: 0070482934 <b>Reference Books</b> Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition, 2015, ISBN: 00706343437	Text Books		
TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-13-349961-2. P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 0070482934 Reference Books Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition,2015, ISBN: 00706343437	Mikell P Groover, "Automation, Production Systems	and Computer-Integrate	d Manufacturing",
P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2015 ISBN: 0070482934 Reference Books Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition,2015, ISBN: 00706343437	TATA McGraw-Hill, 4th Edition, 2015, ISBN- 13: 978-0-	13-349961-2.	
Reference Books           Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition,2015, ISBN: 00706343437	P N Rao, "CAD / CAM" Tata McGraw-Hill 3rd Edition, 2	015 ISBN: 0070482934	
Zeid Ibrahim, "Mastering CAD/CAM", Tata McGraw Hill. 4th Edition, 2015, ISBN: 00706343437	Keference Books		070 (242427
	Zeia Ibranim, "Mastering CAD/CAM", Tata McGraw Hill	. 4th Edition,2015, ISBN: 0	0/0634343/



Boucher, T. O., Chapman & Hall "Computer Automation in Manufacturing",London, UK, 1996. ISBN 10: 0-13-349961-8 Alasdair Gilchrist, "Industry 4.0 The Industrial Internet of Things", Apress, 2017 ISBN-13 : 978-1-4842-2046-7.

#### e- Resources

https://industri.fatek.unpatti.ac.id/wp-content/uploads/2019/03/245-Automation-Production-Systems-and-Computer-Integrated-Manufacturing-Mikell-P.-Groover-Edisi-4-2015.pdf

https://link.springer.com/book/10.1007/978-1-4842-2047-4

https://www.youtube.com/watch?v=54XQ_vw6LVI

https://www.youtube.com/watch?v=9fqygvj-O2s

#### **Course Outcomes**

At the end of the course, students will be able to,

Analyze the concepts of CIM

**Apply** the concepts of mathematical equation in material handling and AS/RS and Automation System **Develop** manual part programs for complex profiles and **Analyze** latest developments in CNC system **Analyze** the techniques involved in Automation and FMS and AMT.

			Course Ar	ticul	latio	on N	<b>latr</b>	rix									
Course	e Outcomes			Program Outcomes											PS O	5	
Course C CO1 CO2 CO3 CO4 CO4 CO1 CO2 CO3 CO4 CO4				1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2
CO1	Analyze	the concepts of	f CIM.	3													
CO2	<b>Apply</b> the equation AS/RS ar	ne concepts o in material nd Automation	f mathematical handling and System.	3													
CO3	Develop complex developm	manual part profiles and aents in CNC s	programs for <b>Analyze</b> latest ystem.			3											
CO4	Analyze Automati	the techniquon, FMS and A	es involved in AMT.	3	2												
			SEE- Cours	se As	ssess	sme	nt P	lan									
COs		Ma	arks Distributio	n						Та	tall	Man	ra.	XX/	oiah	togo	
	Unit I	Unit II	Unit III	Unit	IV		Un	it V		10		viai	ND	vv	eign	lage	
CO1	2+9							2+9			2	2			22%	, S	
CO2	9	9+2	9								2	9			29%	, S	
CO3				2	+9						1	1			11%	, S	
<b>CO4</b>		9	9+2		9		9			38					38%	, )	
	20	20	20	2	20			20			10	00			1009	PS 0 1 2	
	Course Articulation MatrixProgram OutcomesProgram OutcomesProgram Outcomes1234567891111201Analyze the concepts of CIM.3345678911111202Apply the concepts of mathematical equation in material handling and AS/RS and Automation System.344444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444 <t< td=""><td></td></t<>																



**Department of Mechanical Engineering** 

EINITE EI EMENT METHODS
[As per Choice Based Credit System (CBCS) & OBE Scheme]
SEMESTER – VI
Course Code: P21ME6022 L-T-P: 3-0-0 Credits: 03
Contact Period-Lecture: 40 Hrs. Exam: 3 Hrs. Weightage: CIE: 50 %; SEE: 50%
Course Learning Objectives:
The objectives of this course are to,
Provide an introductory approach to finite element method as a basic numerical tool for solving mechanical
engineering problems.
It also highlights various analyses of axially loaded uniformly tapered and stepped bars, truss members,
beams and heat transfer problems.
Course Content
UNIT-I
Introduction to FEM: Need for use of FEM, Advantages and disadvantages of FEM, Engineering
Applications of FEM, Steps involved in FEM, Discretization process - types of elements (1D,2D,3D), size
of the elements, location of nodes, node numbering scheme, Method of solution of linear algebraic
equations - Gauss elimination method. Basic elastic equations – body force and traction force, strain-
displacement relations. Principle of minimum potential energy and derivation of potential energy functional
for a 3D elastic body, concept of plane stress and plane strain and their stress-strain relations.
Self-study component: Methods for FEM formulation, Gaussian Quadrature for 1D integrals.
UNIT-II Internal-tion Madala Division of the order of division of the order of division of the order of the order of the
<b>Interpolation Models</b> : Displacement function, selection of the order of displacement function,
convergence criteria, geometric isotropy, Pascal's triangle for 2D polynomial, Different co-ordinate
systems used in FEW, interpolation of shape functions for ID mean and quadratic bar elements in cartesian
(OUAD 4) and quadratic quadrilateral alament (0 noded). Iso peremetric, sub peremetric and super
(QOAD-4) and quadratic quadratical element (9-noded), iso-parametric, sub-parametric and super-
Salf study component: Simpley compley and multipley Elements Pascal's pyramid for 3D
INIT-III
<b>Element Stiffness Matrix and Load Vectors:</b> Strain displacement matrix. Stiffness matrix and load vector
for linear and quadratic bar element. Assembly of elements by direct stiffness method. Treatment of
boundary conditions- elimination and penalty methods. Analysis of axially loaded uniformly tapered and
stepped bars.
<b>Self study component:</b> Stress vector for CST element under plane stress and plane strain condition.
UNIT-IV

Analysis of Plane Trusses and Beams: stiffness matrix for plane truss element, analysis of truss members. Hermite shape function for beam element in Cartesian coordinates (Description), Stiffness matrix and load vector (Description) for beam element, element shear force and bending moment, analysis of beams. 8 Hrs

**Self study component:** Differences between Hermite shape function and Lagrange interpolation function. Case studies on Electronic components.

#### UNIT-V

Analysis of Heat Transfer Problems: Steady state heat transfer, 1D heat conduction- governingequation, boundary conditions, one-dimensional element, Galerkin's approach to heat conduction, heat flux boundary condition. 1D heat transfer in thin fins-Formulation of equations. Simple numerical of 1D heat transfer problems on composite walls with conduction and convection. 8 Hrs

**Self study component:** Different types of boundary conditions in heat transfer problem. Case studies on Electronic components.



#### Text Books:

• Chandrakanth S Desai and J.F. Abel, "Introduction to the Finite Element Method", CBS, 1st edition, 2005, ISBN: 978-8123908953.

• T R Chandrupatla and A D Belegundu, "Introduction to Finite Elements in engineering", Pearson, 4th edition, 19th October 2011, ISBN: 978-0132162746.

#### **Reference Books:**

- O.C. Zienkiewicz, "**The FEM its basics and fundamentals**", Elsevier Publisher, 6th edition, 2007, ISBN: 978-8131211182.
- J.N. Reddy, "Finite Element Method", McGraw Hill International Edition, 2005, ISBN: 9780072466850.
- Daryl. L. Logon, "Finite Element Methods", Thomson Learning 5th edition, 1st Jan 2011, ISBN: 978-0495668251.
- David V. Hutton, "**Fundamentals of Finite Element Analysis**", Tata McGraw Hill Publishing Co. Ltd, New Delhi, 10th June 2005, ISBN: 978-0070601222.
- Singiresu S Rao, "**The Finite Element Method in engineering**", Elsevier Publisher, 5th edition, 2008 ISBN: 978-9380931555.
- Nitin S. Gokhale, "**Practical Finite Element Analysis**", Finite To Infinite, 2008th edition, 2020, ISBN: 978-8190619509.

#### e- Resources:

https://nptel.ac.in/courses/112/105/112105308/

https://nptel.ac.in/courses/112106135

https://youtu.be/KR74TQesUoQ

urse Outcomes: At the end of the course, students will be able to,

Understanding the fundamental principles of FEM such as discretization, interpolation and numerical integration and **apply** it for solving complex engineering problems.

Formulate element stiffness matrices and load vectors for different elements using variational principle and **analyze** axially loaded bars.

Utilize finite element formulations in **analyzing** the stresses, strains and reactions of trusses and transversely loaded beams.

Formulate finite element equations for heat transfer problems using Variational and Galerkin techniques to **analyze** conduction and convection heat transfer problems.

	Course Articulation Matrix														
Cours	a Autoomog			P	rog	gra	m	Ou	tco	m	es			<b>P</b> S	50
Cours	e Outcomes	1	1 2 3 4 5 6 7 8 9 10 11 12				1	2							
	Understanding the fundamental principles of FEM such as														
<b>CO1</b>	discretization, interpolation and numerical integration and	3	1										1		
	<b>apply</b> it for solving complex engineering problems.														
CO2	Formulate element stiffness matrices and load vectors for														
	different elements using variational principle and analyze	3	2	1									1		
	axially loaded bars.														
CO3	Utilize finite element formulations in analyzing the														
	stresses, strains and reactions of trusses and transversely		3	1									1		
	loaded beams.														
<b>CO4</b>	Formulate finite element equations for heat transfer														
	problems using Variational and Galerkin techniques to		2	$\mathbf{r}$			1						1		
	analyze conduction and convection heat transfer		3	Ζ			1						T		
	problems.														



	SEE- Course Assessment Plan												
COs		Ma	rks Distribution	n		Total Manla	Weightage (0/)						
	Unit I	Unit II	1 Otal Marks	weightage (%)									
<b>CO1</b>	OI         2+9         9         20												
CO2	9	2+9	2+9			31	31%						
CO3			9	2+9+9		29	29%						
<b>CO4</b>					2+9+9	20	20%						
20 20 20 20 20 20 100 100%													
	Analysis = 80%: Application = 20%												



**Department of Mechanical Engineering** 

#### HEATING, VENTILATION AND AIR CONDITIONING

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – VI

Course Code: P21ME6023		L-T-P: 2-2-0	Credits: 03
Contact Period-Lecture: 40 Hrs.	Exam: 3 Hrs.	Weightage: CIE: 50 %;	SEE: 50%

#### **Course Learning Objectives:**

The objectives of this course are to,

Study the principles, design, and operation of heating, ventilation and air conditioning (HVAC) systems. Learn about the fundamentals of heat transfer, psychrometrics, equipment selection, system design, and energy efficiency in HVAC systems.

> Course Content UNIT-I

Introduction to HVAC Systems: History of Air Conditioning, Overview of HVAC systems, Components and their applications, Importance of HVAC systems in buildings, Sustainability and Green Buildings, Roles and responsibilities of HVAC engineers. Single-zone Air Conditioning Systems (Summer air conditioning systems, Summer air conditioning systems with reheat, Winter air conditioning systems, Air conditioning systems using evaporative cooling). Multi-zone Air Conditioning Systems (Multi-zone systems with reheat, Dual-duct multi-zone air conditioning systems, Variable air volume (VAV) systems).

8 Hrs

Self-study component: Trends in Energy Use and Impact, Overview of HVAC Design Procedure.

UNIT-II

**Psychrometric Principles of HVAC:** Introduction, Basic Psychrometric Processes: Mixing of two moist air streams, Sensible heating or cooling, Dehumidification by cooling, Humidification of air, Evaporative cooling and Space condition line. Numerical. **The Psychrometric Chart:** Constant dry-bulb temperature lines, Saturation curve and constant relative humidity lines, Constant wet-bulb temperature lines, Constant specific volume lines, Enthalpy–moisture protractor, and Sensible heat ratio protractor. Numerical. *Case Study:* MATLAB Code for Psychrometric Properties.

8 Hrs

8 Hrs

Self-study component: Applications of Psychrometric Processes.

UNIT-III

**Basics of Design considerations in HVAC systems:** Introduction, Outdoor Design Conditions, **Thermal Comfort and Indoor Design Conditions:** Heat transfer from the human body, Indoor design conditions, Indoor air quality. **Internal Heat Sources in Buildings:** Heat gain from people, Heat gain from lighting, Heat gain from equipment. Transient Effects in Building Energy Transfer: Transient heat conduction through walls, Heat gain by a thin surface.

**Self-study component:** Moisture Transport in Building Structures - Fick's law.

UNIT-IV

**Cooling and Heating Load Calculations:** Cooling Load Calculation Methods: Heat balance method (HBM), Radiant time series (RTS) method, Application of the RTS method and the Central Air Treatment (CTS) method. Heating Load Calculation Methods. Numerical. **Basics of Duct and Pipe Sizing**: Duct Systems, Fans, Air-Diffusing Equipment, Pipe, Tube, and Fittings, Pumps. *Case Study:* MATLAB Code for Cooling Load due to People.

8 Hrs

#### Self-study component: MATLAB Code for Cooling Load due to Wall Conduction

UNIT-V

**Building Energy Estimating and Modeling Methods:** Introduction, Degree–Day Method for Estimating Energy Use. **Bin Method for Estimating Energy Use:** Generation of bin data, Applications of the bin method, Cycling of furnaces, Air-source heat pumps, Cooling towers, Variable occupancy rates. **Simulation Methods for Estimating Energy Use:** Central HVAC systems, Simulation of multi-chiller



systems, Simulation of water-loop heat pump system (WLHPS). Numerical. *Case Study: MATLAB Code for Bin Data and Degree–Days* 

#### Self-study component: Discuss future of HVAC.

Text Books

Nihal E Wijeysundera, **"Principles of Heating, Ventilation, and Air Conditioning with worked** examples", published by world scientific publishing Co. Pte. Ltd, ISBN: 978-981-4667-76-0.

John W. Mitchell, James E. Braun, "Principles of Heating, Ventilation, and Air Conditioning in Buildings", 1st Edition, ISBN: 978-1-118-81215-0 March 2014.

#### **Reference Books**

R.S. Khurmi and J.K. Guptaa, "A Textbook of Refrigeration and Air Conditioning", S Chand Publications, 5th Edition, ISBN: 978-81-219-2781-9

Ronald. H. Howell, "Principles of Heating Ventilating and Air Conditioning, Based on the 2017 ASHRAE Handbook—Fundamentals", 8th Edition, ISBN: 978-1-939200-73-0 (hardback) and ISBN: 978-1-939200-74-7 (PDF).

C P Arora, "**Refrigeration and Air Conditioning**", 3rd edition, McGraw-Hill Publications, ISBN-13: 978-0-07-008390-5.

e-Resources:

https://nptel.ac.in/courses/112105129

**Course Outcomes:** At the end of the course, students will be able to,

**Interpret** the various components of HVAC systems using the principles of heating and cooling.

**Apply** heat transfer principles to **design** heating and cooling requirements for different spaces and **analyze** heat loads to perform psychrometric study.

Apply energy-efficient practices in HVAC system design, operation, and maintenance.

**Develop** MATLAB codes based on ASHRAE Handbook of Fundamentals.

			Course Art	iculation Mat	rix													
C	. 0						P	rog	gra	m	Ou	tco	m	es			<b>P</b> S	<b>50</b>
Cours	e Outcomes				1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	Interpret th using the prir	e various cor ciples of heati	nponents of H ng and cooling.	VAC systems	3	3											1	
CO2	Apply heat transfer principles to design heating and cooling. CO2 cooling requirements for different spaces and analyzed heat loads to perform psychrometric study. Analyze energy-efficient practices in HVAC system																1	
CO3	<b>Analyze</b> ene design, opera	ergy-efficient	practices in H tenance.	IVAC system		3	1			2							2	
CO4	<b>Develop</b> MA of Fundamen	TLAB codes tals.	based on ASHR	AE Handbook		3	2		1								1	1
			SEE- Course	e Assessment I	<b>Pla</b>	n												
COs		Ma	rks Distribution	n				г	¹ ot	<b>.</b>	Ма	nlz	a	77	Voi	aht	0.0	•
	Unit I	Unit II	Unit III	Unit IV	U	nit	t V	1	. 01	a	via	IK	5	v	v er	gnu	ag	E
<b>CO1</b>	2+9	2+9		2+9						3	3				3	3%		
CO2	<b>O2</b> 2+9						9			2	2				2	2%		
<b>CO3</b>	2 <b>03</b> 9 9									1	8		18%					
<b>CO4</b>	<b>CO4</b> 9 9							27					27%					
	20	20	20	20		20	)			1(	00		100%					

Application = 55% Analysis = 18% Develop = 27%

8 Hrs



Department of Mechanical Engineering

MATERIALS SELECTION	NAND FAILURE ANAL	LYSIS
[As per Choice Based Credit S	System (CBCS) & OBE Sche	eme]
SEMES Course Code: P21ME6024	$\frac{1 \text{ EK} - \text{VI}}{\text{ L-T-P: 2-2-0}}$	Credits: 03
Contact Period - Lecture: 40 Hrs. Exam: 3Hrs.	Weightage: CIE:	50 %; SEE: 50%
Course Learning Objectives:	8 8	
The course aims at enabling the students to understand	the concepts of material s	science and metallurgy and
failure analysis tools to select appropriate material bas	ed on applications.	
Course	Content	
UN	IT-I	
Introduction: Classification of engineering materi	als: metals, ceramics, g	lasses, elastomers, polymers.
Definition of material properties, material selection,	material selection and m	nanufacturing, design process,
procedure for martial selection, additional factors to	consider, consideration	of the manufacturing process,
ultimate objective, material substitution, effect of prod	uct liability on material se	election.
		8 Hrs
Self Study Component: Material selector issue of ma	terials engineering.	
UN Material and allow selection. Solution states and	II-II mantu lineita matanial ind	lisss The metanial index for a
light strong tig light stiff been and light strong h	operty minits, material inc	nices-The material index for a
machanisma Matarial property shorts; modulus dona	ity strongth donsity mo	dulus strongth and stiffnass
specific strength etc	ity, suengin - density, mo	
<b>Self Study Component</b> . Material property charts: the	mal conductivity _therma	l diffusivity
IN	T-III	i diffusivity
Material selection- case studies: Materials for oars.	materials for large teles	copes, materials for table legs.
materials for flywheels, materials for high flow fans,	materials for springs, elas	stic hinges, materials for seals.
pressure actuators, and safe pressure vessels.	8-,	8 Hrs
Self Study Component: Materials for passive solar he	ating.	
UN	IT-IV	
Selection of materials and shape: Shape factors, el	astic extension, elastic be	ending and twisting, failure in
bending and twisting, axial loading and column buck	ling, efficiency of standar	rd sections, material limits for
shape factors, microscopic shape and shape factors. Ca	ase studies on selection of	materials and shape-Forks for
a racing bicycle.		8 Hrs
Self Study Component: Material indices which include	le shape.	
UN	IT-V	
<b>Failure analysis tools</b> : Reliability concept and hazar	d function, life prediction	, life extension, application of
Poisson, exponential and Weibull distributions for i	eliability, bath tub curve	e, parallel and series systems,
MTBF, MTTR, FMEA-design FMEA, process FME	A, analysis of causes of f	ailure modes, ranks of failure
modes. Illustration through Numerical examples.	and and a property	8 Hrs
Sen Study Component: Fault tree analysis; industrial	case studies on FMEA.	
Text Books:		
Michael F Ashby, 2016, "Materials Selection in Mec	hanical Design", 3rd Editi	on, Butterworth – Heinemann,
ISBN: 0/50643579.		
Anderson 1 L, 2017, "Fracture Mechanics: Fund	amentals and Application	ons", 4" Edition, Taylor and
Francis, ISBN 9781515570295.		
Reference Books:		
Courtney T H, 2006, Mechanical Behavior of Mat	erials, Overseas Press (I	ndia) Private Limited, ISBN:
9781577664253.		
Vijandro Singh 2020 Dhysical Matellurgy Standard I	ublichers Distributors ICI	DNI. 070 0106200620

Vijendra Singh, 2020, Physical Metallurgy, Standard Publishers Distributors, ISBN: 978-8186308639 William D Callister, 2017, Material Science and Engineering, John Wiley & Sons Inc, 9th edition,



ISBN:	:9781118324	4578.															
e-Res	e-Resources:																
http://	http://link.springer.com/book/10.1007%2F978-1-4899-6826-5																
http://	http://phindia.com/bookdetails/materials-science-and-engineering-raghavan-visbn-																
http://	http://nptel.ac.in/courses/Webcoursecontents/IIScBANG/Material%20Science/New_index1.html																
Cours	Course Outcomes:																
At the	At the end of the course, the students will be able to .																
Choos	<b>Choose</b> the most appropriate material and shape based on applications.																
Apply	<b>Apply</b> the knowledge of mechanical properties and behaviour of materials.																
Apply engineering problems using failure analysis tools.																	
Analyze and Quantify mechanical integrity and failure in materials.																	
Course Articulation Matrix																	
Course Outcomes PSO																	
	Cou		22	1	2	3	4	5	6	7	8	9	10	11	12	01	02
	Choose the	e most appro	priate materia	al													
CO1	and shape l	based on appl	ications.	3	1												
	Apply the	knowledge	of mechanica	al													
CO2	properties a	and behaviou	r of materials.	3													
CO2	Apply en	gineering p	roblems usin	g 2	1								2				
COS	failure ana	lysis tools.		- 3	1												
CO4	Analyze	and Quantif	y mechanica	al	2												
C04	integrity ar	nd failure in n	naterials.		3												
			SEE-	Cour	se As	ssess	men	t Pla	n								
COs		Ma	rks Distribut	tion					r	Fota	1		Ţ	Woigl	ataaa		
	Unit I	Unit II	Unit III	Unit	IV		Unit	t V	Ν	Iark	s		•	veigi	nage		
<b>CO1</b>	2+9					9			29				29	%			
CO2	9	2+9								20				20	%		
CO3	<b>CO3</b> 9 2+9 20 20%																
<b>CO4</b>			2+9	9	)		2+	9		31				31	%		
	<u>20</u> 20 20 20 20 100 100%																
			Applica	tion =	69%	Ar	nalys	is=3	81%								



Depart	ment of Mechani	cal Engineering	
ADVAN	CED ENGINEER	RING MATERIALS	
[As per Choice	Based Credit System	m (CBCS) & OBE Scheme]	
	SEMESTER	R-VI	
Course Code: P21ME6031		L-T-P: 3-0-0	Credits: 03
Contact Period-Lecture: 40 Hrs.	Exam: 3 Hrs.	Weightage: CIE: 50 %;	SEE: 50%
Course Learning Objectives:			
The objectives of this course are to,			
Distinguish various classes of adv	vanced materials, the	heir processing, properties an	d applications
Interpret new terms and informat	ion advanced and e	emerging materials.	
	Course Co	ntent	
	UNIT-	[	
particles, fibres. Effect of reinforceme metallurgy process, diffusion bonding,	ent, volume fractio stir casting, squee	n, rule of mixtures, Processi ze casting.	ng of MMC, powder 8 Hrs
Self study components: Differentiate	the MMCs and all	oys.	
	UNIT-I	I	
<b>Recent Advances of Ceramics comp</b> types of ceramics, applications of cer forming processes, Various types of aluminium oxide, silicon nitride, reinf types of refractories, properties of refn of silica, configuration of minerals.	<b>Dosites , Refractor</b> amics, processing Ceramic Matrix c Forcements : particl ractories, <b>Silica an</b>	ries: Ceramic Materials: Bas of ceramics: glass-forming p composites: oxide ceramics, es, fibres, whiskers. <b>Refracto</b> <b>d Silicates</b> : Crystalline and p	ic ceramic structure, processes, particulate non oxide ceramics, pries: Refractoriness, non-crystalline forms 8 Hrs
Self study component: High-Silica Gl	asses and Photoch	romic- Zena Glasses	
v i U	UNIT-I	П	
Nano-materials: Introduction, proce electromechanical systems, applicatio heat-resisting alloys, hastelloy, nick temperature purpose alloys), Ni-based shape memory effect (SME), materia applications.	esses to prepare ns of CNT. <b>Su</b> el–molybdenum s d cryogenic steels l systems of diffe	nano-materials, uses, futu <b>per-alloys</b> : Nickel Alloys, ty teel alloy, cryogenic steels . <b>Shape Memory Alloys</b> : In rent shape memory alloys, p	re prospects, nano- ypes of super-alloys, (or extremely low ntroduction, concept, preparation of SMA,

Self study component: Biomedical Materials applications.

UNIT-IV Sandwich Composite Materials: Introduction, types: honeycombs and foams, types of face (skin) materials for sandwich constructions and their characteristics, special applications: spacecraft grade sandwich composites, marine grade sandwich composites, aircraft grade sandwich composites, automobile grade sandwich composites, current fields of research in sandwich composites/constructions. Biocomposite Materials: Biodegradable plant fibre-reinforced composite, advantages, disadvantages, applications, and different types of plant fibres for green composite.

8 Hrs

8 Hrs

Self study component: Custom sandwich composite for paddle surfboard.

**UNIT-V** 

Emerging and Futuristic Materials: Introduction, applications, FGMS in construction, functionally graded fibre-reinforced concrete applications, functionally graded fibre cement, mixture design for choosing fibre cement, Epoxy-TiO2 particulate-filled functionally graded, functionally graded nanoelectronic, optoelectronic and thermoelectric materials, applications of FGM. Biomimetic Materials: Moth eye-inspired biomimetic materials, termite-inspired biomimetic materials, mosquito bite-inspired



biomimetic materials.

#### Self study component: PbTe-Based FGM Thermoelectric Materials

#### **Text Books:**

Advanced Engineering Materials: Principles and Applications by K.M. Gupta, ISBN: 978-9385676107,I.K. International Publishing House, 2014

Engineering Materials, M.F. Ashby: 4th Edition, Elsevier, 2005.

#### **Reference Books:**

Handbook of Cellular metals, Production, processing, Application, Edited by Hans Peter Degischer and Brigitte Kriszt, Wiley - VCH, 2002.

Biomaterials Science, An Introduction to Materials in Medicine, Edited by B.D. Ratner, A.S. Hoffman, F.J. Sckoen, and J.E.L Emons, Academic Press, second edition, 2004.

Handbook of Materials for Medical Devices, Edited by J. R. Davis, ASM international, 2003.

#### e- Resources:

https://www.youtube.com/watch?v=KMcsjCXfLQw&list=PLyAZSyX8Qy5Am_2StOOQ5vCUE3VIcAen E

https://www.youtube.com/watch?v=2rxbxNem1iI&list=PLyqSpQzTE6M_ON8uXt-PP8uX6hMWJeYSJ https://www.youtube.com/watch?v=649fIwvIvRc&list=PLwdnzIV3ogoVE2AIC-G4Uew8XsaINwJGo https://www.youtube.com/watch?v=MtqugJcsHZs&list=PLbRMhDVUMngdzwQyMgoUgdaGBqi_p4nV M

https://www.youtube.com/watch?v=ebO38bbq0_4&list=PLbMVogVj5nJTdeiLvuGSB_AE8hloTAHWJ

**urse Outcomes**: At the end of the course, students will be able to,

**Apply** the concept of structure, properties, and relationships of advanced and emerging engineering materials and predict material behavior based on these relationships.

Identify the various advanced materials for different processing techniques.

**Apply** different advanced material characterization techniques to emphases the various engineering materials.

Analyze the properties and behavior of structural materials.

			Course Art	iculation Mat	rix													
<b>C</b>	Course ArticulationCourse OutcomesApply the concept of structure, properties, relationships of advanced and emerging engine materials and predict material behavior based on relationships.CO2Identify the various advanced materials for diff processing techniques.CO3Apply different advanced material characteriz techniques to emphases the various engineering materials.CO4Analyze the properties and behavior of struct materials.SEE- Course AssessmCO5Marks DistributionCO122Q22Co12222Co29999						P	rog	gra	m (	Ou	tco	m	es			PS	<b>50</b>
Cours	e Outcomes				1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	<ul> <li>Apply the concept of structure, properties, and relationships of advanced and emerging engineering materials and predict material behavior based on these relationships.</li> <li>O2 Identify the various advanced materials for different</li> </ul>																	
CO2	<b>CO2 Identify</b> the various advanced materials for different processing techniques.																	
CO3	Apply diffe techniques to	erent advance emphases the	d material cl various engineer	naracterization ing materials.	3													
CO4	Analyze the materials.	e properties	and behavior	of structural		3												
	•		SEE- Course	e Assessment I	Pla	n												
COs		Ma	rks Distributior	1				7	<b>F</b> _6 <b>f</b>		Ма	-		No:	ah	tog	o ()	0/)
	Unit I	Unit II	Unit III	Unit IV	U	J <b>ni</b> t	t V	_	ιοι	ai I	via	I'K;	5	vei	gn	lag	e (	70)
CO1	2	2	2	2		2				1	0				1	0%		
CO2	9	9								1	8				1	8%		
CO3	<b>CO3</b> 9 9 9 9 9									4	5				4	5%		
<b>CO4</b>	CO4 9 9									2	7		27%					
	20 20 20 20						)			10	)0				10	)0%	)	
			Application $= 7$	3%, Analyze	= 2	27%	, )											

8 Hrs

Depart	tment of Mechanie	cal Engineering	
ELEC	CTRIC AND HYB	RID VEHICLES	
[As per Choice	e Based Credit Syste SEMESTEF	m (CBCS) & OBE Scheme] R – VI	
Course Code: P21ME6032		L-T-P: 3-0-0	Credits: 03
Contact Period-Lecture: 40 Hrs.	Exam: 3 Hrs.	Weightage: CIE: 50 %;	SEE: 50%
Course Learning Objectives:			
The objectives of this course are to,			
Present a comprehensive overview of I	Electric and Hybric	l Electric Vehicles.	
Choose a suitable drive scheme for dev	veloping an electric	c hybrid vehicle depending or	resources.
Identify various communication protoc	cols and technologi	es used in vehicle networks.	
	Course Col	ntent	
	UNIT-	ſ	
<b>Introduction to Hybrid Electric</b> environmental importance of hybrid an Interdisciplinary Nature of HEVs, Sta performance, vehicle power source cha	Vehicles: History nd electric vehicles, ate of the Art of H aracterization, trans	v of hybrid and electric v impact of modern drive-trair HEVs. <b>Conventional Vehicless</b> smission characteristics.	vehicles, social and is on energy supplies, es: Basics of vehicle
		11 T	8 Hrs
Self Study Component: Sustainable	ransportation, Cha	The second set of the second s	OF HEVS.
<b>Hybrid Electric Drive-trains:</b> Basic topologies, power flow control in hyl <b>trains</b> : Basic concept of electric tract flow control in electric drive-train top	concept of hybrid brid drive-train top tion, introduction t pologies, fuel effici	traction, introduction to vario pologies, fuel efficiency anal o various electric drive-trai ency analysis.	ous hybrid drive-train ysis. <b>Electric Drive</b> - n topologies, power
	-		8 Hrs
Self Study Component: Induction M	otor Drives Perma	nent Magnet Motor Drives	0 0
ben bludy component. Induction M	JINIT.I	II	
<b>Electric Propulsion unit:</b> Introduct Configuration and control of DC Moto <b>the drive system:</b> Matching the elec propulsion motor, sizing the power ele	ion to electric co or drives, Configura tric machine and t ectronics, selecting	mponents used in hybrid a ation and control of Induction he Internal Combustion Eng the energy storage technology	nd electric vehicles, Motor drives. <b>Sizing</b> ine (ICE), Sizing the y.
			8 Hrs
Self Study Component: Design and S	Sizing of Traction N	Aotors.	
	UNIT-I	V	
Plug-in Hybrid Electric Vehicles: Range of Blended PHEVs, Fuel Eco Component Sizing: Component Sizir Conversions, Vehicle-to-Grid Technol	Introduction to Phonomy of PHEVs, of of EREVs, Comogy.	HEVs, PHEVs Architectures Power Management of PHE ponent Sizing of Blended PH	, Equivalent Electric EVs, PHEVs Design. IEVs, HEV to PHEV
			8 Hrs
Self Study Component: EV and PHE	V Battery Chargers	8.	
	UNIT-	V	
Energy Storage and Charging Stat Electric Vehicles, Battery based energ Selection and Sizing of charging statio station. Communications, Supportin Strategies: Introduction to energy man of different energy management strate	<b>ions:</b> Introduction y storage, Fuel Cel on, Components of <b>ng Subsystems:</b> I aggement strategies egies.	to Energy Storage Required l based energy storage, Typ charging station, Single line n vehicle networks- CAN, used in hybrid and electric v	ments in Hybrid and e of charging station, diagram of charging Energy Management ehicles, classification

Self Study Component: Comparison of different energy management strategies. Text Books

8 Hrs



Iqbal Husain, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003, ISBN-10: 0849314666, ISBN-13 9780429101588.

Chris Mi, M Abul Masrur, Davi D Wenzhog Gao, **"Hybrid Electric Vehicles principles and Applications with Practical Perspectives"**, Wiley, 2011, ISBN-10: 0470747730, ISBN-13: 9780470747735.

#### **Reference Books**

James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2012, ISBN - 978-1-119-94273-3.

Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, **"Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design"**, CRC Press, 2004, ISBN-10: 0849331544, ISBN-13: 978-0849331541.

#### e-Resources:

https://www.youtube.com/watch?v=h5ysddrlXLw

https://www.researchgate.net/publication/347161983_Plug-In_Hybrid_Electric_Vehicles_PHEVs

https://www.youtube.com/watch?v=6H5vtu5_SF4

https://archive.nptel.ac.in/courses/108/103/108103009/

urse Outcomes: At the end of the course, students will be able to,

Apply the knowledge of basic science to study components of HEVs.

Apply basic concepts for designing electric and hybrid electric vehicles.

**Identify** the different sources of energy and communications in Hybrid and Electric Vehicles.

Analyze the architecture and power technologies in HEVs and Plug-in Hybrid EVs.

Course Articulation Matrix																		
Carro							P	rog	ra	m (	Ou	tco	me	es			PS	50
Cours	e Outcomes				1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	<b>Apply</b> the components of	knowledge of HEVs.	of basic scien	ce to study	3						1							
CO2	Apply basic electric vehic	ic and hybrid	3		1													
CO3	<b>Identify</b> th communication	e different ons in Hybrid a	sources of and Electric Veh	energy and icles.	2						3							
<b>CO4</b>	Analyze the a	architecture and	d power technol	ogies in HEVs														
	and Plug-in H	Iybrid EVs.				2												
	·		SEE- Course	e Assessment H	Pla	n												
COs		Mai	rks Distributior	1				г	'ot	പ	Ма	nlz		Nai	ah	tog	o ()	0/)
	Unit I	Unit II	Unit III	Unit IV	U	Jnit	: V	1	υι		via	1 K)	5 1	vei	gn	lag	e (	/0)
<b>CO1</b>	2+9		9			9				2	9				2	9%		
<b>CO2</b>		2+9	2+9							2	2				2	2%		
<b>CO3</b>	<b>CO3</b> 9						9			2	0				2	0%		
<b>CO</b> 4	<b>CO4</b> 9 2+9+9							29				29%						
	20 20 20 20						)			1(	)0				10	)0%	)	
		1%, Analyze =	= 29	9%														

P.E.S. College of Engineering, Mandya Department of Mechanical Engineering

(	CONTROL ENG	INEERING	
[As per Choice	Based Credit System	m (CBCS) & OBE Scheme]	
Course Code: P21ME6033	SEMESTER	L-VI	Credits: 03
Contact Period-Lecture: 40 Hrs.	Exam: 3 Hrs.	Weightage: CIE: 50 %;	SEE: 50%
Course Learning Objectives:		0 0 /	
The objectives of this course are to,			
Design and analysis of linear control sy	stems to improve	their static and transient beha	avior.
Analyse the frequency and time respons	se of the different	control system.	
Apply the concepts of stability of control	ol system by using	g different plots.	
	Course Con	ntent	
<b>Introduction:</b> Concept of automatic co control systems, requirement of an id system, traffic control system, liquid 1 Definition of Laplace transformation systems, models of DC and AC motors	ontrols, open and o leal control syster evel control syste , transfer functio s, models of hydra	closed loop control systems, n. Examples of control sys m. <b>Mathematical Models</b> n models, mathematical m ulic systems and models of th	concepts of feedback tems - home heating of Physical Systems: odels of mechanical hermal systems.
Self-Study Component: Concept of su	perposition for lin	ear systems with examples	9 111 5
<b>Sen-Study Component:</b> Concept of Su	Unit-2	ear systems with examples.	
Block Diagrams and Signal Flow Grassystem elements, reduction of block interchanging of summing point only). diagram, Manson's gain formula.	aphs: Transfer fur diagrams (Num Signal flow grap)	nctions definition, block diag erical based on shifting o hs – Terminologies, Signal f	ram representation of f take-off point and low graph from block 7 Hrs
Self-Study Component: Transfer funct	tion of multiple in	put multiple output control S	ystems
<b>Time Response Analyses</b> : Introduction system response to step and ramp input Second order system response to step in Steady-state error analysis, steady-state constant and static acceleration error co	n, transient and st s, concepts of time input, transient res e error constants- onstant.	eady state response of contr e constant and its importance sponse specifications (descri static position error constan	ol system. First order in speed of response. ption and numerical). t, static velocity error
Salf Study Component: Study of voric	ous controllors in s	nutometed machines	8 Hrs
Sen-Study Component. Study of Vario	Jus controners in a	lutomated machines.	
Mathematical Concept of Stability: S stability criterion, special cases of Rou stability- concepts phase margin and attenuation diagrams, stability analysis	tability definition, th's criterion. <b>Fre</b> gain margin. Free using Bode plots.	characteristic root locations equency Response Analysis quency response analysis us	and stability, Routh's Polar plots, relative ing Bode plot: Bode
		10 11 1	8 Hrs
Self-Study Component: System compo	ensation: Series ar	id feedback compensation	
<b>Root Locus Analysis</b> : Introduction, d locus analysis of control systems. <b>Stat</b> transformation matrix, controllability, a	efinition of root 1 te-Space Analysis and observability, 1	oci, general rules for constr S: Introduction, definitions, Kalman and Gilberts test.	ructing root loci, root state-space equations, <b>8 Hrs</b>
Self-Study Component: MATLAB pro	ogram to generate	root-locus plot.	
Text Books			



Katsuhiko Ogata, "**Modern Control Engineering**", PHI Learning Pvt. Ltd, 5th Edition, 2010, ISBN: 9788120340107.

Rao V Dukkipati, "Control Systems", Narosa Publishing House, Standard Edition, 2008, ISBN: 978-8173195549.

#### **Reference Books**

Joseph J. Distefano, Allen R. Stubberud and Avan J. Williams, **"Feedback and Control Systems"**, Schaum's Outlines series, Tata McGraw Hill, New Delhi, 2nd Edition, 2003, ISBN: 9780070582880.

I. J. Nagarath and M. Gopal, "Control systems", New age International publishers, 4th Edition, 2006, ISBN: 9788122417753.

F. Golnaraghi and B.C. Kuo, "Automatic Control Systems", John Wiley and Sons, 9th Edition, 2009, ISBN: 9780470048962.

Ashfaq Husain and Haroon Ashfaq, "**Control Systems**", Dhanpat Rai and Co., 2015, ISBN: 9788177000276.

#### e- Resources:

https://www.youtube.com/watch?v=7LZSjgZz-

Qw&list=PLxn52v8fxX5l5tGzU1NAxRDkgqxK0k5UZ

https://www.youtube.com/watch?v=Pv0i-9wWrCI&list=PLSGws_74K018thqvpXHrs5DkeJcx8lX7u

urse Outcomes: At the end of the course, students will be able to,

**Identify** the components of control systems given real life situation.

**Develop** transfer function models and state-space models of single input single output, linear time invariant systems.

Analyse the time response of first and second order systems.

Apply the concept stability in control systems using various methods.

			Course Art	iculation Mat	rix													
Cours	o Outoomog						P	rog	gra	m (	Ou	tco	m	es			PS	50
Cours	e Outcomes				1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	Identify the o	components of	control systems	given real life	3												2	
	situation.				5												2	
CO2	Develop tran	sfer function r	nodels and state	-space models														
	of single in	nput single o	output, linear t	ime invariant	2		3											
	systems.																	
<b>CO3</b>	Analyse the	time respons	se of first and	second order	1	2												
	systems and r	reduction of blo	ock diagram.		1	З												
<b>CO4</b>	Apply the c	concept stabili	ity in control s	systems using	c		1											
	various metho	ods.			3		1											
			SEE- Course	e Assessment H	Pla	n												
COs		Ma	rks Distribution	n				7	<b>1</b> .4		<b>\</b> ر		~ 1	Ve	~h	4.0.0	a ()	0/)
	Unit I	Unit II	Unit III	Unit IV	U	J <b>ni</b> t	t V		. 01	aL	VIa	ILK	s Weighta				ge (%)	
<b>CO1</b>	2+9									1	1				1	1%		
CO2	9				2	2+9	+9			2	9				2	9%		
CO3	CO3 2+9+9 2+9+9									4	0				4	0%		
<b>CO4</b>	2+9+9									2	0		20%					
	20 20 20 20						)			1(	)0				1(	)0%	ó	
		Applic	ation =31%, An	alysis = 40%, I	Dev	elo	p=	29	%									



DDUD		CEMENT	
[As per Choice Bas	ed Credit System (Cl	BCS) & OBE Schemel	
	SEMESTER – VI	I	
Course Code: P21ME6034	L-T-P: .	3-0-0 Credits:03	
Contact Period-Lecture: 40 Hours	Exam:3 Hours	Weightage%:CIE:50,SEE:50	
Course Learning objectives:			
The objectives of this course are to.			
Identify the demand of the products that has	s to be produced in	future using forecasting technique.	
Use of scheduling techniques and inventor	ory control method	d to optimize the facility location and p	lant
layout to improve the quality of product.			
	Course Content	t	
	Unit-1		
Introduction: Introduction, Meaning and	concepts of Produ	luction Management (PM), evolution of 1	PM.
Productivity: strategies to improve produ-	ctivity, product stra	rategies, product and process focused syst	tem,
product life cycle, world class manufact	turing. <b>Organizati</b>	ion of the Operations Functions: Pro-	cess
focused organization, product focused or	ganization structur	are, difference between process and proc	duct
focused Organization.			
		8	Hrs
Self Study Component: Functions of Prod	luction Managemen	nt, production to stock or to order, produc	tive
system positioning strategies			
	Unit-2		
Forecasting: Need for forecasting, obje	ectives and limita	ations of forecasting, costs of forecast	ing,
Classification of Forecasting Methods:	Time series metho	od, components time series methods, sin	nple
moving average, weighted moving avera	ages, simple expo	onential smoothing method, least square	e or
regression, Delphi technique.			тт
Salf Study Common on the Moon Abashuta D	Nerviction (MAD)	8. Maan Sayana Eman (MSE). Maan Ahaalista	Hrs
Dercontage Error (MADE)	reviation (MAD), N	Mean Square Error (MSE), Mean Absolute	;
recentage Error (WALE).	Unit_3		
Excilition Location and Plant Lavout	Introduction gene	aral procedure for location factors offer	tina
location cost analysis quantitative method	ad GRID method	<b>Plant Layout:</b> objectives of plant lay	vout
factors affecting plant layout types	of plant layouts	s process layout method: numerical	out,
load distance analysis systematic layout nla	anning	8 Hrs	on
Self Study Component: Factors to be	e considered to s	select foreign locations list the comp	niter
approaches to layout design.		select foreign focutions, list the comp	ater
	Unit-4		
Scheduling: Define scheduling, scheduling	g strategies, Forwa	vard and backward scheduling, Johnson's	rule
for 2 machines, 3 machines and n machines	s, graphical method	d for 2 machines and n jobs, indexing meth	hod.
		8	Hrs
Self Study Component: Scheduling seque	ence operation, star	ndard scheduling techniques, different type	es
of control charts			
	Unit-5		
Inventory Control: Types of inventory c	ontrol, cost associa	iated with inventory control, classification	n of
inventory items, problems on ABC ana	lysis on inventory	y, deterministic model in inventory cont	trol:
problems only on economic lot size with	uniform rate of der	emand and instantaneous replenishment, fi	inite
rate of replenishment with shortages. Qual	ity control: Introd	duction to Quality control, Plan Do Check	Act
(PDCA Cycle), Quality circle, Kaizen, 5S,	Six Sigma, Introduc	iction to ISO standards. 8 Hrs	
Self Study Component: KANBAN-system	1, JIT, POKEYOKI	E.	
Text Books			



Joseph G.Monks, "Operations Management", Tata McGraw-Hill, 2ndEdition, 2004, ISBN: 0070588708.

R. Panneerselvam, "Production and Operations Management", PHI Publishers, 3rd Edition, 2006, ISBN: 9788120345553.

#### **Reference Books**

Barry Shore, **"Operations Management"**, Mc Graw Hill Inc., 1973, ISBN:9780070570450. Samuel Eilon, **"Elements of Production Planning and Control"**, Universal Publishing Corporation, 1991, ISBN:9788185027098.

Buffa and Sarin, **"Modern Production/Operations Management"**, Wiley India Pvt. Ltd., 8thEdition, 2007, ISBN:9788126513727.

T.R. Banga and S.C. Sharma **"Industrial Engineering & Management, Including Production** Management", 12th edition, 2017, ISBN: 978-81-933284-6-0.

#### e- Resources

https://nptel.ac.in/courses/110107141

https://nptel.ac.in/courses/112107238

https://archive.nptel.ac.in/courses/112/102/112102106/

urse Outcomes: At the end of the course, students will be able to,

**Apply** various production management techniques and tools to improve productivity and efficiency in manufacturing or service operations.

**Evaluate** different types of production systems and **analyze** the factors affecting production system design, capacity planning, and layout configuration.

**Analyze** the production processes to achieve cost-effectiveness, minimize waste, reduce lead time and improve overall operational performance.

**Analyze** statistical process control, quality assurance techniques and control quality throughout the production process.

Apply the leadership and teamwork abilities within the context of production management.

	Course Articulation Matrix														
Cours	a Outaamag			P	rog	gra	m (	Ou	tco	me	es			<b>P</b> S	50
Cours	e Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	<b>Apply</b> various production management techniques and tools to improve productivity and efficiency in manufacturing or service operations.								2	2					
CO2	<b>Evaluate</b> different types of production systems and <b>analyze</b> the factors affecting production system design, capacity planning, and layout configuration.		3												
CO3	<b>Analyze</b> the production processes to achieve cost- effectiveness, minimize waste, reduce lead time and improve overall operational performance.		3												
CO4	Analyze statistical process control, quality assurance techniques and control quality throughout the production process.		3												
C05	<b>Apply</b> the leadership and teamwork abilities within the context of production management.	3								3	2				



# P.E.S. College of Engineering, Mandya Department of Mechanical Engineering

SEE- Course Assessment Plan											
COs		Ma	rks Distributio	n		Total Marks	Weightage (9/)				
	Unit I	Unit II	Unit III	Unit IV	Unit V	1 otal Marks	weightage (70)				
<b>CO1</b>	2+9					11	11%				
CO2		2+9+9				20	20%				
<b>CO3</b>			2+9+9	2+9+9		40	40%				
<b>CO4</b>					2+9	11	11%				
<b>CO5</b>	9				9	18	18%				
	20	20	20	20	20	100	100%				
	Application = 49%, Analyse=51%										



	THEORY OF PL	ASTICITY	
[As per Choice	e Based Credit Syste	m (CBCS) & OBE Scheme]	
	SEMESTER	R-VI	<b>A 1</b>
Course Code: P21ME6035		L-T-P: 3-0-0	Credits: 03
Contact Period-Lecture: 40 Hrs.	Exam: 3 Hrs.	Weightage: CIE: 50 %;	SEE: 50%
Course Learning Objective:			
The objective of this course is to prov	ide a basic underst	tanding of the plasticity theorem	ry as applied to metal
working processes and their analysis for	or improved quality	y and productivity.	
	Course Co	ntent	
	UNIT-	I	
Fundamental of Elasticity: Concept	of stress, equilibri	um equation stress transform	nation laws, spherical
and deviator stress tensors, octahed	al stresses, conce	pt of strain, representation	strain, compatibility
equations, deviator and spherical strain	n tensors, strain tra	nsformation laws, elastic stra	in energy, theories of
strength, numerical.			
			9 Hrs
Self Study Component: Maximum	principal stress	theory (Rankine), maximum	shear stress theory
(Tresca).		_	
	UNIT-I		
Plastic Deformation of Metals: Crys	talline structure in	metals, mechanism of plastic	e deformation, factors
affecting plastic deformation, strain h	ardening, recover	y, recrystalization and grain	growth, flow figures
(Luder's lines). Yield Criteria: Introd	uction, yield or pla	asticity conditions, Tresca an	d von-Mises criteria,
experimental evidence for yield crite	eria (a) Lode's ex	periment (b) Quinney's exp	eriment. The Haigh-
westergaard stress space.			0 II
Salf Study Component: Maximum	principal strain th	arry (Saint Vanant) total s	o mis
volume (Heigh)	principal suall u	eory (Sant-Venant), total s	train energy per unit
volume (maigh).	LINIT I	TT	
Stress- Strain Relations: Introduction	UNIT-I	als empirical equations the	ories of plastic flow
experimental verification of Saint-Ver	ant's theory of n	astic flow concept of plastic	potential maximum
work hypothesis concepts of stress rat	e	astic now, concept of plastic	
work hypothesis, concepts of stress ful	с.		7 Hrs
Self Study Component: Mechanical y	work for deforming	a plastic substance.	
	UNIT-I	V	
Slip Line Field Theory: Introduction.	basic equations for	r incompressible two dimens	ional flow, continuity
equations (Geiringer equation). stresse	es in conditions of	plain strain, convention for s	lip lines, solutions of
plastic deformation problem, geometr	y of slip line filed	, properties of slip lines. con	nstruction of slip line

**Self Study Component:** Velocity discontinuity at certain slip lines.

UNIT-V

**Bending of Beams:** Introduction, analysis of stresses, linear and non-linear stress-strain curve, shear stress distribution, residual stresses in plastic bending, numerical. **Torsion of Bars:** Introduction, plastic torsion of a circular bar, elastic- perfectly - plastic material, elastic work hardening material, residual stresses and numerical.

Self Study Component: Plane strain bending of beam and plastic torsion of a circular bar. Text Books:

nets.

8 Hrs

8 Hrs



Sadhu Singh, "**Theory of Plasticity and Metal Forming Processes**", Khanna Publishers, 3rd Edition, 2015, ISBN: 9788174090509.

J. Chakraborty, "**Theory of plasticity**", Butter-Heinemann publisher, 3rd Edition, 2007, ISBN: 9789380931715.

#### **Reference Books:**

R. A. W. Slater, "**Engineering Plasticity: Theory and Application to Metal Forming Processes**", McMillan Press Ltd, 1st Edition, 1977, ISBN: 9780333157091.

Jacob Lubliner, "**Plasticity Theory**", Dover publications Inc, 1st Edition, 2008, ISBN: 9780486462905.

Avitzur, B., "**Metal Forming Processes and Analysis**", McGraw Hill, 1st Edition, 1968, ISBN: 9780070025103.

L. M. Kachanov, **"Fundamentals of the Theory of Plasticity**", Dover Publication, 1st Edition, 2004, ISBN: 9780486435831.

#### e- Resources

https://www.youtube.com/watch?v=tb0yGRdK91w

https://www.youtube.com/watch?v=yc8UPMZ1FNA&list=PLwdnzlV3ogoUH_9gN_6royr0u04Eq_z-T

urse Outcomes: At the end of the course, students will be able to,

**Apply** the equation for stress transformation, spherical, deviator, octahedral stresses and strains, and **analyse** the same.

**Identify** factors affecting plastic deformation, strain hardening, recovery, recrystalization, cubical dilation, true stress – strain.

Analyse the plastic flow of material using various theories, stress distribution in plastic bending of beams and residual stresses in torsion of bars.

**Develop** basic equation for incompressible two dimensional flows, continuity equation and **analyse** the slip line field and Yield stress.

Program Outcomes		D	
		PS PS	<b>SO</b>
1         2         3         4         5         6         7         8         9         10	11 12	1	2
Apply the equation for stress transformation, spherical,			
CO1 deviator, octahedral stresses and strains, and analyse the 3 2			
CO2 Identify factors affecting plastic deformation, strain hardening, recovery, recrystalization, cubical dilation, true 3 stress – strain.			
CO3 Analyse the plastic flow of material using various theories, stress distribution in plastic bending of beams 2 3 and residual stresses in torsion of bars.			
CO4 Develop basic equation for incompressible two			
dimensional flows, continuity equation and analyse the 3 2			
slip line field and Yield stress.			
SEE- Course Assessment Plan			
COs Marks Distribution Total Marks W	eight	tage	e
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	200/	,	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2070	0 ,	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1170	0 /	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29%	, ,	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	100%		
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	100/	~	

HEAT AND MASS TRANSFER [As per Choice Based Credit System (CBCS) & OBE Scheme] SEMESTER – VI

Department of Mechanical Engineering

Course Code: P21ME604		L-T-P: 3-0-2	Credits: 04
Contact Period - Lecture: 40+24 (P) Hrs	Exam: 3Hrs.	Weightage: CIE: 50%;	SEE:50%
Course Learning Objective:			
The objective of this course is to cover the bas	ic principles of hea	it transfer, to present a w	ealth of real-
world engineering examples to give students	a feel for how he	at transfer is applied in	engineering
practice and to develop an intuitive understand	ing of the subject n	natter by emphasizing the	e physics and
physical arguments.	~		
Con	urse Content		
	UNIT-I	<b>11</b> , <b>1</b> , <b>1</b> , <b>1</b>	<i>.</i> ••••
General introduction: Modes and basic laws	of heat transfer.3L	)-general heat conduction	1 equation in
Cartesian coordinates, heat conduction equation	in in cylinder and s	pherical co-ordinates (no	) derivation).
Boundary conditions of conduction problem	ns. Numerical. Of	ie Dimensional steady	state neat
conduction: stab, nonow cynnder, nonow	Sphere and their	composites. One Dime	Droblom
conduction with internal near generation in stab		JI IIISUIAUOIIS, INUIIIEIICAI	<b>0 H</b> rs
Self study component. Combined Heat Tra	unsfer Mechanism	Thermal Resistances ir	n Series and
Parallel	unster wieenamsm,	Thermai Resistances in	i benes and
	UNIT-II		
<b>Theory of fins:</b> Governing partial differential	equation – One Dir	nensional fin of uniform	cross-section
-Numerical problems. Transient Heat Con	duction: Systems	with negligible interna	al resistance,
Transient heat conduction in plane walls, cylind	ders, spheres with c	convective boundary cond	litions, Chart
solution, Numerical problems.	-	-	
			8 Hrs
Self-study component: Applications of Fins	, Numerical metho	ods for 1D & 2D stead	y state Heat
conduction.			
	UNIT-III		
Convection: Concept of boundary layers (hydro	o dynamic and ther	nal) - critical Reynolds nu	umber. Drag-
co-efficient and heat transfer coefficient, Rey	nold's – Colburn	analogy. Application of	dimensional
analysis for free & forced convection problems	, significance of Re	ynolds, Prandtl, Nusselt	and Grashoff
numbers. Free convection: free convection from	m vertical, horizont	al and inclined flat plates	, vertical and
horizontal cylinder. Numerical Problems. Force	ed convection: Flow	<i>v</i> over a flat plate, over a	cylinder and
across a tube bundle, flow through tubes and du	cts. Numerical Prot	nems.	0 IIma
Salf study component: Forced Convection coo	ling of electronic d	avicas	9 Hrs
Sen-study component. Forced Convection coo			
Radiation: Introduction- absorption reflection	on and transmission	n of radiation black an	d grev body
concept Kirchoff's Law Planck's law We	in's displacement	law. Lamberts cosine la	aw. radiation
intensity- total emissive power, radiation betw	een two parallel bl	ack surfaces, gray surfac	ces, radiation

7 Hrs

#### Self study component: Fundamental principles of white, Opaque and transparent body.

shield, Hottel's cross string formula. Numerical Problems.





#### UNIT-V

**Heat exchangers:** Classification of heat exchangers overall heat transfer coefficient, fouling and fouling factor; LMTD, effectiveness- NTU methods of analysis of heat exchangers. Numerical Problems. **Heat transfer with phase change (boiling and condensation**). Types of condensation, Nusselt's theory for laminar condensation on a vertical flat surface, regimes of pool boiling, Numerical Problems. **Mass transfer**: Mass transfer concept and Fick's law of diffusion (no numericals)

#### **Self study component:** Shell & tube, compact & multipass heat exchangers.

#### Practical Content

24 Hrs

7 Hrs

**Exp-1:** Determination of thermal Conductivity of a Metal Rod.

Exp-2: Determination of Overall Heat Transfer Coefficient of a Composite wall.

**Exp-3:** Determination of Effectiveness and Efficiency of a Metallic fin.

**Exp-4:** Determination of free Convective Heat Transfer Coefficient of a vertical Cylinder.

**Exp-5:** Determination of Heat Transfer Coefficient in Forced Convection.

**Exp 6:** Determination of Effectiveness in Parallel Flow and Counter Flow Heat Exchangers.

**Determine the following using suitable software/programming language:** 

Develop code using suitable software to determine thermal conductivity in slab with and without heat generation using Fourier's law of heat conduction.

Develop code using suitable software to determine heat transfer coefficients in convection methods.

Develop code using suitable software to determine emissivity of a surface and Stefan's Boltzmann constant.

#### **Text Books**

A Basic approach by M Necati, Ozisik, **"Heat Transfer,"** Mc-Graw Hill International edition, 1988, ISBN: 978-0070479821

Frank Kreith, Mark Bohn, "Principles of Heat Transfer," Cengage Learning, 6th edition, 2006, ISBN: 978-8131500385.

#### **Reference Books**

Yunus A Cengel, **"Heat transfers a practical approaches,"** Tata Mc-Graw Hill, Mc-graw Hill, 2nd edition 1st October, 2002, ISBN: 978-0072458930.

James Sucec, "Heat Transfer," Jaico Book house, 2002, ISBN: 978-8172247799.

Er. R K Rajput "Heat & Mass Transfer," S ChandPublications, 2008, ISBN: 978-8121926171.

P.K. Nag, "Heat & Mass Transfer," Tata Mc-Graw Hill, 3rd edition, 2011, ISBN: 978-0070702530.

R.C.Sachdeva, "Fundamentals of Engg. Heat & Mass Transfer," New Age, 4th edition, 2010, ISBN: 978-8122427851.

J.P. Holman, Souvik Bhattacharyya"**Heat Transfer**," Tata Mc-Graw Hill, 10th edition, 2011, ISBN: 978-0071069670.

#### e-Resources:

https://www.youtube.com/watch?v=qa-PQOjS3zA&list=PL5F4F46C1983C6785 https://www.youtube.com/watch?v=IedD23t5jI4&list=PLSGws_74K01_ojmo4aRFPp3gUU0VFKE SJ https://www.youtube.com/watch?v=sKnE5qvz0fc&list=PLbRMhDVUMngeygd_uWiLqa3fzA2h7v dRx https://www.youtube.com/watch?v=IedD23t5jI4&list=PLpCr5N2IS7Nmu22MOgDWOr0sSIIpUNU z3 https://www.youtube.com/watch?v=ljmWQlKm61U&list=PLbRMhDVUMnge4mnym5cCEKm_gT R_FLVve



Course Outcomes: At the end of the course, students will be able to,

**Apply** fundamentals of heat transfer to **formulate** the governing differential equation to solve onedimensional steady and unsteady state heat conduction process.

Apply the concepts of convection heat transfer to **analyse** the problems using both analytical and empirical approaches.

Apply the concepts of heat transfer to **design** and **analyse** the thermal systems.

**Interpret** experimental data and validate by writing codes and prepare report as an individual or as a team member to communicate effectively.

				Course A	<b>Articulation</b> M	<b>I</b> at	rix												
			Course Ou	utcomes				P	Prog	gra	m (	Ou	tco	me	S			PS	<b>60</b>
						1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2
COApply fundamentals of heat transfer to formulate the governing differential equation to solve one- dimensional steady and unsteady state heat conduction process.						3	2											1	
CO 2	2 Apply the concepts of convection heat transfer to analyse the problems using both analytical and empirical approaches.																	2	
CO 3	App anal	Apply the concepts of heat transfer to <b>design</b> and <b>analyse</b> the thermal systems.																1	1
CO 4	4 Interpret experimental data and validate by writing codes and prepare report as an individual or as a team member to communicate effectively.									2				3	3				2
				SEE- Cou	rse Assessme	nt ]	Pla	n											
CO	Os			Marks Dist	ribution							]	To Ma	tal rks	5	V	Wei	ight e	ag
		Unit I	Unit II	Unit III	Unit IV		1	Uni	it V	7									
CO	01	2+9+ 9	2+9+9		2			4	2				4	4			4	4%	
CC	02			2+9+9									2	0			2	0%	
CC	)3				9+9			9-	+9				3	6			3	<b>6%</b>	
CC	)4			Note	e: Assessmen	t oi	nly	in	CI	E									
		20	20	20	20			2	20				1(	00			1(	)0%	
			Appli	cation = $48 \%$ ,	Analysis $= 42$	2 %	, De	esig	gn =	= 1(	)%								



P.E.S. College of Engineering, Mandya Department of Mechanical Engineering

ALTERNATE FUELS, E	NERGY CONV	VERSION AND CONSERV	ATION
[As per Choice B	ased Credit Syste SEMESTER	m (CBCS) & OBE Scheme] <b>R – VI</b>	
Course Code: P21MEO6051		L-T-P: 3-0-0	Credits: 03
Contact Period-Lecture: 40 Hrs.	Exam: 3 Hrs.	Weightage: CIE: 50 %;	SEE: 50%
Course Learning Objectives:			
The objectives of this course are to,			
Identify different types of alternate fuels	and explore the	advantages, disadvantages an	d application of
alternate fuels.			
Understand the economic concept of energy	rgy and explore	various energy storage techni	ques and systems,
focusing specifically on mechanical ener	gy storage metho	ods.	
	Course Co	ntent	
	UNIT-	I	
<b>Introduction:</b> Types of energy sources conventional energy sources, Classificati required, Implementation barriers for a Introduction to solar energy, solar en concentrating collectors (Cylindrical par	and their availation of alternative llternative fuels, ergy collectors;	ability, need for alternative of e fuels and drivetrains. Techn stakeholders of alternative Liquid flat plate collector ion of solar energy	energy sources, Non- ological up gradation fuels. <b>Solar energy</b> rs, solar air heaters,
concentrating concetors (Cymuncar, par	abone), applicat	ion of solar energy.	8 Hrs
Self-Study Component: Site selection fuels.	considerations	for wind Energy, Scenario	of conventional auto
	UNIT-I	Ι	
Gaseous alternative fuels: Introductidisadvantages and application of hydrogadsorbed natural gas and landfill gas(LFC)	on, properties, gen, compressed G).	production, storage, transpondent production, storage, stor	ortation, advantages, d natural gas (LNG), 8 Hrs
Self-Study Component: Natural gas, liq	uefied petroleun	n gas (LPG), liquefied hydrog	gen ( $LH_2$ ).
			1 1' /'
of Biogas, Biomethane, Methanol, Ethan	ol, straight vege	torage, advantages, disadvant table oil (SVO) and biodiesel	ages and applications.
			8 Hrs
Self-Study Component: Khadi and Villa	age Industries Co	ommission, Butanol.	
	UNIT-I	V	
Alternative power trains: Component transmission and power devices. Advant Drive train components, advantages of I operation. Advantages, disadvantages and	nts of an Electrages and disadv HV. <b>Dual fuel:</b> d application of	rical Vehicles (EV), batteri antages of EVs. <b>Hybrid elec</b> History of dual fuel technolo duel fuel technology.	es, chargers, drives, etric vehicles (HEV): ogy, Duel fuel engine
Salf Study Component: Advanced tech	nology in Flectri	ic vahicles & Hybrid Electric	o ms
Sen-Study Component. Advanced tech			venicies.
Energy Conservation, Economic conservation	UNII-	v inciples of energy conservation	ion and energy audit
energy conservation approach. Co-Gener	ration Waste he	at utilization. Heat recuperate	ors heat regenerators
energy storage energy storage system: M	lation, waste ne	at utilization, ficat recuperate	ns, near regenerators,
chergy storage, chergy storage system, w	reenamear energ	y storage.	8 Hrs
Self-Study Component: Combined cycl	e power generati	ion, Heat pipes, Electrical sto	rage.
S S Things "Alternative Evale" IA	ICO Dublishina	House 2010 10. ISDN 10.0	18/050780 ICDN 12.
978-8184950786.		the use we say that the the the the the the the the the th	10+750700 ISDIN-15:
G.D. Ra1 <b>"Non-Conventional Ener</b> 110006, ISBN:978-81-7409-073-8.	rgy Sources" 6	" edition, Khanna Publishin	g, 2017, New Delhi.



#### **Reference Books**

Richard L Bechtold P.E., "Alternative Fuels Guide book", Society of Automotive Engineers, 1997 ISBN 0-76-80-0052-1.

S P Sukhatme, J K Nayak **"Solar energy"** Mc Graw Hill 3rd Edition New Delhi. ISBN: 9780070142961, 9780070260641, 0070142963, 0070260648

M. Poulton- "Alternative fuels for vehicle book "1994. 978-1562522254

Richard L. Bechtold, "Automotive Fuels Guide Book", SAE Publications, 1997. ISBN-10 1853123013

T.N. Veziroglu-"Alternative energy sources", McGraw Hill ISBN-10 : 007067471X ISBN-13 : 978-0070674714

A Primer on "Hybrid Electric vehicles", ISBN No. 978-93-5570-356-9

Pavan K N, Ramesh Kurbet, "Renewable Energy Technology", 2023, Notion press, ISBN-13:9798889353621.

#### e –Resources:

https://nptel.ac.in/courses/103103206

https://nptel.ac.in/courses/115105127

https://www.un.org/en/climatechange/what-is-renewable-energy

urse Outcomes: At the end of the course, students will be able to,

Apply the knowledge of alternate fuels to study their properties, production methods and potential applications.

Analyze energy-efficient technologies to conserve energy in design principles and behavior modification approaches to reduce energy consumption.

**Apply** emerging trends in technological advancements and innovations in the field of alternate fuels and energy conservation.

**Course Articulation Matrix** 

Analyze energy planning and management techniques to optimize energy use and waste recovery.

Carro	urse Outcomes						Program Outcomes										PS	50
Cours	e Outcomes				1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	Apply the k	nowledge of	alternate fuels	to study their							1							
	properties, pr	roduction meth	ods and potentia	l applications.	3						1							
<b>CO2</b>	Analyze ene	rgy-efficient te	chnologies to co	onserve energy														
	in design prin	nciples and beh	avior modification	ion approaches		2					1							
	to reduce ene	o reduce energy consumption.																
CO3	Apply emer	Apply emerging trends in technological advancements																
	and innovations in the field of alternate fuels and energy										1							
	conservation.																	
<b>CO4</b>	Analyze energy planning and management techniques to										1							
	optimize ene	rgy use and wa	ste recovery.			2					1							
			SEE- Course	e Assessment I	Pla	n												
COs		Ma	rks Distributio	n				-	Total Marks Weights as (							07.)		
	Unit I	Unit II	Unit III	Unit IV	U	Jnit	t V	1	ιοι	a	VIa	IK	5 1	ve	ıgп	lag	e (	70)
CO1	2+9	9								2	0				2	0%		
CO2			2+9	2+9		2+	9	33							3	3%		
CO3	9	2+9						2	0				2	0%	)			
<b>CO4</b>			9	9		9				2	7				2	7%	%	
	20	20	20	20		20	)			1(	)0				1(	)0%	, D	
	·	•	Application $= 4$	10% Analysis	=6	0%												



INTRODU	CTION TO FINI?	TE ELEMENT METHODS	
[As per Cho	bice Based Credit Sys	stem (CBCS) & OBE Scheme]	
	SEMEST	ER – VI	
Course Code: P21MEO6052		L-T-P: 3-0-0	Credits: 03
Contact Period-Lecture: 40 Hrs.	Exam: 3 Hrs.	Weightage: CIE: 50 %;	SEE: 50%
Course Learning Objectives:	-		
The objectives of this course are to,			
Provide an introductory approach to	o finite element met	hod as a basic numerical tool	for solving mechanical
engineering problems.			-
It also highlights various analyses	of axially loaded u	uniformly tapered and stepped	d bars, truss members,
beams and heat transfer problems.	-		
	Course (	Content	
	UNI	Г-І	
Introduction to FEM: Need for	use of FEM, Ad	vantages and disadvantages	of FEM, Engineering
Applications of FEM, Steps involve	ed in FEM, Discret	ization process - types of elen	nents (1D,2D,3D), size
of the elements, location of node	es, node numberin	g scheme, Method of solution	on of linear algebraic
equations - Gauss elimination met	thod. Basic elastic	equations – body force and	traction force, strain-
displacement relations. Principle of	minimum potential	energy and derivation of pote	ntial energy functiona

**Self-study component:** Methods for FEM formulation, Gaussian Quadrature for 1D integrals.

for a 3D elastic body, concept of plane stress and plane strain and their stress-strain relations.

#### UNIT-II

**Interpolation Models**: Displacement function, selection of the order of displacement function, convergence criteria, geometric isotropy, Pascal's triangle for 2D polynomial, Different co-ordinate systems used in FEM, Interpolation or shape functions for 1D linear and quadratic bar elements in cartesian and natural co-ordinate systems. Lagrangian polynomial–Shape functions for linear quadrilateral element (QUAD-4) and quadratic quadrilateral element (9-noded), Iso-parametric, sub-parametric and super-parametric elements.

8 Hrs

8 Hrs

Self study component: Simplex, complex and multiplex Elements, Pascal's pyramid for 3D.

#### UNIT-III

Element Stiffness Matrix and Load Vectors: Strain displacement matrix, Stiffness matrix and load vector for linear and quadratic bar element. Assembly of elements by direct stiffness method, Treatment of boundary conditions- elimination and penalty methods. Analysis of axially loaded uniformly stepped bars. 8 Hrs

Self study component: Analysis of axially loaded uniformly tapered bars.

#### UNIT-IV

Analysis of Plane Trusses and Beams: stiffness matrix for plane truss element, analysis of truss members. Hermite shape function for beam element in Cartesian coordinates (Description), Stiffness matrix and load vector (Description) for beam element, element shear force and bending moment, analysis of beams. 8 Hrs

**Self study component:** Differences between Hermite shape function and Lagrange interpolation function. Case studies on Electronic components.

### UNIT-V

Analysis of Heat Transfer Problems: Steady state heat transfer, 1D heat conduction- governingequation, boundary conditions, one-dimensional element, Galerkin's approach to heat conduction, heat flux boundary condition. Simple numerical of 1D heat transfer problems on composite walls with conduction and convection. 8 Hrs

Self study component: Different types of boundary conditions in heat transfer problem. Case studies on



Electronic components.

#### **Text Books:**

Chandrakanth S Desai and J.F. Abel, "Introduction to the Finite Element Method", CBS, 1st edition, 2005, ISBN: 978-8123908953.

T R Chandrupatla and A D Belegundu, "**Introduction to Finite Elements in engineering**", Pearson, 4th edition, 19th October 2011, ISBN: 978-0132162746.

#### **Reference Books:**

O.C. Zienkiewicz, "The FEM its basics and fundamentals", Elsevier Publisher, 6th edition, 2007, ISBN: 978-8131211182.

J.N. Reddy, "Finite Element Method", McGraw Hill International Edition, 2005, ISBN:9780072466850.

Daryl. L. Logon, "Finite Element Methods", Thomson Learning 5th edition, 1st Jan 2011, ISBN: 978-0495668251.

David V. Hutton, "**Fundamentals of Finite Element Analysis**", Tata McGraw Hill Publishing Co. Ltd, New Delhi, 10th June 2005, ISBN: 978-0070601222.

Singiresu S Rao, "**The Finite Element Method in engineering**", Elsevier Publisher, 5th edition, 2008 ISBN: 978-9380931555.

Nitin S. Gokhale, "**Practical Finite Element Analysis**", Finite To Infinite, 2008th edition, 2020, ISBN: 978-8190619509.

#### e- Resources:

https://nptel.ac.in/courses/112/105/112105308/

https://nptel.ac.in/courses/112106135

https://youtu.be/KR74TQesUoQ

urse Outcomes: At the end of the course, students will be able to,

Understanding the fundamental principles of FEM such as discretization, interpolation and numerical integration and **apply** it for solving complex engineering problems.

Formulate element stiffness matrices and load vectors for different elements using variational principle and **analyze** axially loaded bars.

Utilize finite element formulations in **analyzing** the stresses, strains and reactions of trusses and transversely loaded beams.

Formulate finite element equations for heat transfer problems using Variational and Galerkin techniques to **analyze** conduction and convection heat transfer problems.

	Course Articulation Matrix														
Cours	a Autoomog	Program Outcomes										PSO			
Cours	e Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	Understanding the fundamental principles of FEM such as														
<b>CO1</b>	discretization, interpolation and numerical integration and	3	1										1		
	<b>apply</b> it for solving complex engineering problems.														
CO2	Formulate element stiffness matrices and load vectors for														
	different elements using variational principle and analyze	3	2	1									1		
	axially loaded bars.														
CO3	Utilize finite element formulations in analyzing the														
	stresses, strains and reactions of trusses and transversely		3	1									1		
	loaded beams.														
<b>CO4</b>	Formulate finite element equations for heat transfer														
	problems using Variational and Galerkin techniques to		3	2			1						1		
	analyze conduction and convection heat transfer														



# P.E.S. College of Engineering, Mandya Department of Mechanical Engineering

problems	
----------	--

SEE- Course Assessment Plan									
COs	Marks Distribution					Total Marka	Weightage (9/)		
	Unit I	Unit II	Unit III	Unit IV	Unit V	Total Marks	weightage (%)		
<b>CO1</b>	2+9	9				20	20%		
CO2	9	2+9	2+9			31	31%		
CO3			9	2+9+9		29	29%		
<b>CO4</b>					2+9+9	20	20%		
	20	20	20	20	20	100	100%		
Analysis = $80\%$ ; Application = $20\%$									

**Department of Mechanical Engineering** 

Page | 72

MA	AINTENANCE E	NGINEERING	
[As per Choic	e Based Credit Syste	em (CBCS) & OBE Scheme]	
Course Code: P21MEO6053	SEMILSTE	L-T-P: 3-0-0	Credits: 03
Contact Period-Lecture: 40 Hrs.	Exam: 3 Hrs.	Weightage: CIE: 50 %;	SEE: 50%
Course Learning Objectives:			
The objectives of this course are to,			
Strengthen the Maintenance and mana	gement capabilitie	s of the students.	
Enable the students to handle the diff	erent maintenance	requirements and management	nt that are commonly
used in machinery and minimize equip	oment failure.		
	Course Co	ntent	
	Unit-1	l	
Maintenance Concept: Introduction	on, Maintenance	Definition, Systems Appro	each, Challenges in
Maintenance, Maintenance Objectives	s, Maintenance Le	vels ,Responsibilities of Main	itenance Department,
Types of Maintenance Systems,	Benefits of Main	itenance, Effects of Maint	enance Concept of
Maintainability, Principles of Mainter	nance.		0 11
Salf study component: Bala of Over	ouling in Mainton	220	8 Hrs
Sen study component: Role of Overn			
Planned Preventive Maintenance: I Preventive Maintenance (PPM), Imp Scheduling, Workload Estimation, Creating a Set of Priority Functions Procedure, Effectiveness of Preventive	Introduction, Scope olementation of PP Manpower Estin s, Forecasting N ve Maintenance, M	of Preventive Maintenance, M, Administrative Structure nation, Scheduling PPM, W Maintenance Requirements, F aintenance by Objectives.	Elements of Planned , Work Planning and ork-order Procedure, Planned Maintenance
			8 Hrs
Self Study Component: Benefits of	PPM.		
	Unit-3	<b>,</b>	
Maintenance Planning and Schedu Allocation, Long-range Planning, Planning Techniques, Planning Pro Maintenance Scheduling. Computers Maintenance Decision Making, Comp	<b>ling:</b> Introduction, Development of I ocedure, Estimatis <b>in Maintenance</b> uterized Maintenan	Planning of Maintenance Fu Maintenance Department, S on of Maintenance Work, M – Introduction, Computer- nce Planning.	Anotion, Manpower Short-range Planning, Aaintenance Control, Aided Maintenance,
		~ · ·	0 1115

Self Study Component: Computer Application In Inventory Control.

**Unit-4 Condition Monitoring:** Introduction, Basic Concept, Levels of Condition Monitoring, Condition-Monitoring Techniques, Future of Condition Monitoring, Case Study. **Maintenance Evaluation** – Introduction, Background of Maintenance Function, Need of Evaluation, Maintenance Function Requirements, Benefits of Maintenance Evaluation, Types of Evaluation, Objectives of Evaluation, Selection of Work Measurement Methods.

Self Study Component: Cost of Maintenance Evaluation. Unit-5

Advances in Maintenance: Introduction, Reliability and Maintenance, Telematic Maintenance Services, Decision Support System Based on Artificial Intelligence, Use of Radio Frequency Identification (RFID), Optimization of Maintenance Activities, Risk-based Maintenance Planning, Total Productive Maintenance (TPM), Maintenance Management, Quality Control in Maintenance, Effective Maintenance Organization.

8 Hrs




# Text Books:

R. C. Mishra and K Pathak, "Maintenance Engineering and Management", PHI, Learing Pvt. Ltd., 2nd edition, 2012, ISBN: 9788120345737.

Morrow L C, "**Maintenance Engineering Hand book**", McGraw-Hill Inc., US; 2nd revised edition, 1967, ISBN: 9780070432017.

### **Reference Books:**

Frank Herbaty, "Hand book of Maintenance Management", Noyes Publication, 2nd edition, 1990, ISBN: 9780815512042.

W.Grant Ireson, Eugene L. Grant, "Hand book of Industrial Engg & Management," 2000.

Herbert F. Lund, "Industrial Pollution Control Handbook," McGraw-Hill Publication, 1st edition, 1971, ISBN: 9780070390959.

e- Resources:

https://youtu.be/f58SW0Hwcf0

https://www.digimat.in/nptel/courses/video/112107241/L11.html

**urse Outcomes**: At the end of the course, students will be able to,

**Identify** maintenance engineering functions in different organizations.

Apply maintenance policy techniques in mechanical systems and **analyse** job and spare parts control.

Apply condition monitoring techniques in industries and adopt advance techniques in maintenance engineering.

Analyse the Root Cause for failure of machines.

	Course Articulation Matrix																	
C	. 0						P	rog	gra	m	Ou	tco	m	es			PS	50
Cours	e Outcomes				1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	<b>Identify</b> maintenance engineering functions in different organizations.															1		
CO2	<b>CO2</b> Apply maintenance policy techniques in mechanical systems and <b>analyse</b> job and spare parts control.																	1
CO3	<b>CO3</b> Apply condition monitoring techniques in industries and adopt advance techniques in maintenance engineering.																	1
<b>CO4</b>	O4 Analyse the Root Cause for failure of machines.																1	
			SEE- Course	e Assessment I	Pla	n												
COs		Ma	rks Distributio	n				7	Total Marka Weighten						· . ()	0/)		
	Unit I	Unit II	Unit III	Unit IV	U	nit	V	_	101	al	VIa	I'K	S	ve	gn	lag	e (	70)
CO1	2+9+9									2	0				2	0%		
CO2	2 2+9+9								20 20%									
<b>CO3</b>			2+9	2+9+9					31						3	1%		
<b>CO4</b>			9		2+9+9				29						2	9%		
	20	20	20	20	20 100 100%					ó								
			Applications=	71%, Analysis=	=29	9%												



OPERATIONS	S RESEARCH	
[As per Choice Based Credit Sy	vstem (CBCS) & OBE Scheme]	
SEMES Course Code: P21MEO6054	<u>ER – VI</u> I .T.P· 2.2.0	Credits: 03
Contact Period - Lecture: 40 Hrs: Exam: 3	Weightage % : CIE:	50-SEE:50
Hrs.		
Course Learning Objectives:		
The objectives of this course are to,		
Understand the basic concepts of Operations Rese	arch.	
Identify and develop operation research models from	om the verbal description of rea	al life and optimize
the solutions.	<b>a</b>	
Course	Content	
Uni Introductions Definition scene of Operations	lt-I	limitations of OD
models, characteristics and phases of OR, ma problems. Graphical solution for maximization and	thematical formulation of lind d minimization problems.	near programming
		8 Hrs
Self Study Component: Advantages and applica	tions of OR.	
Uni Lincon Drogramming Drobloms: Simpley m	it-2 othod slask sumbus and a	rtificial variables
degeneracy and procedure for resolving degenerac	y Big M method two phase m	ethod
degeneracy and procedure for resolving degenerac	y. Dig wi method, two phase m	8 Hrs
Self Study Component: Dual simplex method.		0 1115
Uni	it-3	
Transportation and Assignment: Formulation of	of transportation problem, initia	al feasible solution
methods, optimality test, degeneracy in transpor	tation problem, assignment pr	roblem, Hungarian
method, travelling salesman problem.		0.11
Solf Study Component: Unbelanced transportation	and assignment problems	8 Hrs
Sen Study Component. Onbaranced transportation	and assignment problems.	
Network Analysis in Project Planning (PER)	and CPM): Project, project	t planning, project
scheduling, project controlling, network terminolo	gies, PERT and CPM.	<b>F G</b> , <b>F J</b>
		8 Hrs
Self Study Component: Crashing of networks.		
Uni	it-5	
Game Theory: Formulation of games, two peopl	e-zero sum game, games with a	and without saddle
point, graphical solution (2 x n, m x 2 game) and system and their characteristics. The $M/M/1$ Quou	dominance property. Queuing	g Ineory: Queuing
M/M/ 1 System	ing system, steady state perior.	nance analyzing of
141/141/ 1 System.		8 Hrs
Self Study Component: Competitive games.		0 0
Text Books:		
Taha H.A, " <b>Operations Research and Intro</b> ISBN:978-93-325-1822-3,	duction", Pearson Education,	9 th edition, 2017,
Prem Kumar Gupta and D.S. Hira, S Chand delhi., 7 th edition, ISBN:978-51-219-0281-6	, "Operations Research",	2014, Pub, New
Reference Books:		
R Panneerselvam, "Operation Research", PHI, 2	nd edition, 2010, ISBN:978-81-	203-2928-7.
S.D. Sharma, "Operations Research", Kedarnath	Ramnath & Co, 2002, 978-93	3-325-1811-1



H. A. Eiselt, Carl-Louis Sandblom, "**Operations Research: A Model-Based Approach**", ISBN: 978-3-642-10325-4 (Print) 978-3-642-10326-1 (Online)

Frederick S. Hillier, Gerald J. Lieberman, "Introduction to Operation Research", McGraw Hill, Seventh Edition.

# e-Resources:

https://www.youtube.com/watch

https://www.edx.org/course/quantitative-marketing-research

https://www.edx.org/course/uconn-cybersecurity-boot-camp

https://www.edx.org/professional-certificate

**<u>Course Outcomes</u>**: After learning all the units of the course, the student is able to,

**Formulate** real world problems as a Linear programming model and demonstrate solution by graphical method and **analysis** technique.

Apply the specific LPP like transportation and assignment and analyse the solution.

Apply the different project mathematical model and **analyze** the solution.

Apply the game and Queuing strategy with their characteristics and analyse the solutions.

	Course Articulation Matrix																
	Cours	e Outcome	S				P	Prog	gran	n O	utco	ome	S			PS	50
				1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	<b>Formulate</b> real world problems as a Linear programming model and demonstrate solution by graphical method and <b>analysis</b> technique.				2										1		
CO2	<b>Apply</b> the specific LPP like transportation and assignment and <b>analyse</b> the solution.				2										1		
CO3	Apply the different mathematical and project model <b>analyze</b> the solution.			2	2										1		
CO4	Apply the game and Queuing strategy with their characteristics and <b>analyse</b> the solutions.			2	2										1		
-	•		SEE- C	our	se A	sse	ssm	ent	Pla	n				1			
COs		Ν	Iarks Distri	buti	on						т	otol	Мог	Jec V	Woigh	togo	(9/.)
	Unit I	Unit II	Unit III	Un	it I	V		Un	it V	7	1	otai	Iviai	N2 1	weigi	llage	(70)
CO1	2+9	9			9				9				38		3	38%	
CO2		2+9	2+9										20		2	20%	
<b>CO3</b>	9		9	2	2+9								29		2	29%	
<b>CO4</b>								2	+9			18			1	18%	
	20	20	20		20			4	20			1	00		1	00%	
			Applicatio	on =	49%	6, .	Ana	lysi	s=5	1%							



P.E.S. College of Engineering, Mandya Department of Mechanical Engineering

[As per Choice Bas	DELING AND ANA ed Credit System (CBCS SEMESTER – VI	S) & OBE Scheme]	ORY
Course Code: P21MEL606		L-T-P:0-0-2	Credits:1
Contact Period-Lecture: 30(P) Hrs.	Exam: 3 Hrs.	Weightage:CIE	:50%; SEE:50%
<b>Course Learning Objectives:</b> The objectives of this course are to, Apply the concept of Finite Florent Mathe	d (FEM) in design one	incoring using ANSX	/S package
Apply the concept of control engineering us	a (PEW) in design eng	sincering using ANS	is package.
repry the concept of control engineering us	Course Content		
	PART-A (ANSVS)		
			15 Hrs
Exp-1: Analysis of plane trusses.			
Exp-2: Analysis of Beams for SFD and BM	ID.		
Exp-3: 2D conduction and convection heat	transfer analysis.		
Exp-4: Analysis of bars with constant cross	section area and taper	red cross section area	
Exp-5: Plane stress analysis of plate with he	ole.		
Exp-6: Modal and Harmonic analysis of fix	ed - fixed beam.		
	PART-B (MATLAB)		
			15 Hrs
			15 1115
<b>Exp-7:</b> Solving of simultaneous equations.			
Exp-8: Unit-step response plot of control sy	ystem for open loop tra	ansfer function, state-	space equation and to
determine rise time, peak time, maxi	mum overshoot and se	ttling time.	
Exp-9: Root locus plot of control systems f	or open loop transfer f	unction and state-spa	ce equation.
Exp-10: Bode plot of control systems for op	pen loop transfer funct	ion and state-space e	quation.
Reference Books:			
SaeedMoaveni, <b>"Finite Element Anal</b> Education 3 rd edition 2007 ISBN: 978-012	ysis Theory and Appl	lication with ANSYS	S", Pearson
Nitin S Gokhale Saniay S Deshnand	e Sanieev V Bedeka	re and Anand N Thi	ite "Practical Finite
<b>Element Analysis</b> ", 2008 th edition, 1 F	February 2020, ISBN	1-12:978-8190619509	9. Finite To Infinite
Publisher.			, ,
Rao V Dukkipati, "Control Systems",	Narosa Publishing Ho	use, 2008, ISBN: 978	-8173195549.
e-Resources:			
https://www.youtube.com/watch?v=p6i	iEJ1fQvh0		
https://www.youtube.com/watch?v=9m	u-mxtFTMU		
https://www.youtube.com/watch?v=1d	vEmK6To7M		
https://www.youtube.com/watch?v=bN	IBuZjZjG80		
https://www.youtube.com/watch?v=3pz	z2-g3oQqU		
https://www.youtube.com/watch?v=3B	whuqzLzBM		
https://www.youtube.com/watch?v=Nv	vJYZHu61kU		
https://www.youtube.com/watch?v=Zm	n2QmeDU5R4		
https://www.youtube.com/watch?v=Rg	QTS8mDW1Q	11 337 - 1	
https://www.youtube.com/channel/UCI	NuB-vNeyDoDLuIZ4	ILWeLw	



**Course Outcomes:** At the end of the course, students will be able to,

Apply the basic concepts of FEM using ANSYS tool.

Analyse the mechanical structure by validating the numerical results with analytical solution.

Apply the concept of control engineering to analyze the mechanical system using MATLAB.

Make use of post processor results for writing a report to communicate effectively.

	Course Articulation Matrix																	
		<b>C</b>	0-4		Pro	ogra	am	Ou	tco	me	S						PSC	)
		Cour	rse Outcomes		1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Apply tool.	y the basic	concepts of FE	M using ANSYS	3				3									2
<b>CO2</b> Analyse the mechanical structure by validating the numerical results with analytical solution.					3	3											2	
<b>CO3</b> Apply the concept of control engineering to analyze the mechanical system using MATLAB.					3	3			2									2
<b>Make use of</b> post processor results for writing a report to <b>communicate</b> effectively.													3	3				
			SE	E- Course Assessi	ner	t P	lan											
CC	Os	I	Marks Distribu	tion	TotalWeightageMarks(%)													
		Part A	Part B	Viva- Voce														
CC	)1	8				8			16%									
CC	CO2 7				7							14	4%					
CC	CO3 25				25							50	0%					
CC	<b>CO4</b> 10			10							20	0%						
15 25 10				50			100%											
Application =16% Analysis = 64% Communication =20%																		



P.E.S. College of Engineering, Mandya

**Department of Mechanical Engineering** 

Mini - Project									
[As per Choice Based Credit System (CBCS) & OBE Scheme]									
SEMESTER – VI									
Course Code:	P21MEMP607	Credits:	02						
Teaching Hours/Week (L:T:P)	0:0:2	CIE Marks:	50						
Total Number of Teaching Hours:26SEE Marks:50									

Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary Mini- project can be assigned to an individual student or to a group having not more than 4 students. (or Mini Project is a laboratory-oriented course which will provide a platform to students to enhance their practical knowledge and skills by the development of small systems/applications)

# **CIE procedure for Mini-project:**

(i) Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide. The CIE marks awarded for the Mini-project work shall be based on the evaluation of project report, project presentation skill, and question and answer session in the ratio of 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

(ii) **Interdisciplinary**: CIE shall be group-wise at the college level with the participation of all the guides of the college through Dean (III). The CIE marks awarded for the Mini-project, shall be based on the evaluation of project report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

# SEE for Mini-project:

- **Single discipline**: Contribution to the Mini-project and the performance of each group member shall be assessed individually in the semester end examination (SEE) conducted at the department through Viva-Voce examination.
- **Interdisciplinary**: Contribution to the Mini-project and the performance of each group member shall be assessed individually in semester end examination (SEE) through Viva-Voce examination conducted separately at the departments to which the student/s belongs to.



P.E.S. College of Engineering, Mandya Department of Mechanical Engineering

	<b>Employability Enhan</b> [As per Choice Based Credit S SEMES	cement Skills (EI System (CBCS) & TER – VI	E <b>S) - VI</b> OBE Scheme]						
Course Co	ode:	P21HSMC608	Credits:	01					
<b>Teaching</b>	Hours/Week (L:T:P):	0:2:0	CIE Marks:	50					
Total Nun	nber of Teaching Hours:	28	SEE Marks:	50					
<ul> <li>Course Learning Objectives: This course will enable students to:</li> <li>Explain the basic concepts in Race and games, Linear equations, mensuration, height and distance.</li> <li>Apply the logical skills in decoding Number, letter series and Game based assessments.</li> <li>Calculations involving Time, Speed and distance, HCF &amp; LCM, Averages and Partnerships</li> </ul>									
UNIT – I 10 H									
Quantitati	Quantitative Aptitude: Race and games, Linear equations								
Logical Reasoning: Number and letter series									
Self-Study: Types of cryptarithm.									
UNIT – II 10 Hours									
Quantitative Aptitude: Mensuration, Height & distance.									
Logical R	easoning: Game based assessments.								
Self-Study	r: Inferred meaning, Chain rule.								
	UNIT – III			08 Hours					
Quantitati	ive Aptitude: Time, Speed and distanc	e, HCF & LCM,	Averages and Partn	erships					
Self-Study	v: Decimal fractions								
Course Ou	atcomes: On completion of this course,	students are able	to:						
CO – 1:	Solve the problems based on Race and distance.	d games, Linear e	equations, mensurat	ion, height and					
CO – 2:	CO – 2: Solve logical reasoning problems based on Number, letter series and Game based assessments.								
<b>CO</b> – <b>3:</b> Solve the problems based on HCF & LCM, averages and partnerships.									
<ul> <li>Text Book(s):</li> <li>1. Quantitative aptitude by Dr. R. S Agarwal, published by S.Chand private limited.</li> <li>2. Verbal reasoning by Dr. R. S Agarwal, published by S. Chand private limited.</li> </ul>									



# **Reference Book(s):**

- 1. Quantitative Aptitude by Arun Sharma, McGraw Hill Education Pvt Ltd
- 2. A Modern Approach to Verbal & Non-Verbal Reasoning by R.S. Agarwal.
- 3. CAT Mathematics by Abhijith Guha, PHI learning private limited.

	COURSE ARTICULATION MATRIX [Employability Enhancement Skills (EES) - VI]												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO-1	2	2	-	-	-	-	-	-	-	-	-	2	
CO-2	2	2	-	-	-	-	-	-	-	-	-	2	
СО-3	2	2	-	-	-	-	-	-	-	-	-	2	



P.E.S. College of Engineering, Mandya

**Department of Mechanical Engineering** 

Universal Human Values and Professional Ethics									
[As per Choice Based Credit System (CBCS) & OBE Scheme]									
SEMESTER – VI									
Course Code:	P21UHV609	Credits:	01						
Teaching Hours/Week (L:T:P):	1:0:0	CIE Marks:	50						
Total Number of Teaching Hours:25 + 5SEE Marks:50									
		·							

## **Course objectives:**

This course is intended to:

- 1. To help the students appreciate the essential complementarity between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
- 2. To facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of existence. Such a holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way.
- 3. To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behaviour and mutually enriching interaction with Nature.
- 4. This course is intended to provide a much-needed orientation input in value education to the young enquiring minds.

# **Teaching-Learning Process (General Instructions)**

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. The methodology of this course is explorational and thus universally adaptable. It involves a systematic and rational study of the human being vis-à-vis the rest of existence.
- 2. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the activities will develop students' theoretical and applied skills.
- 3. State the need for UHV activities and its present relevance in the society and Provide real-life examples.
- 4. Support and guide the students for self-study activities.
- 5. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress in real activities in the field.
- 6. This process of self-exploration takes the form of a dialogue between the teacher and the students to begin with, and then to continue within the student in every activity, leading to continuous selfevolution.
- 7. Encourage the students for group work to improve their creative and analytical skills.

# Module - 1Introduction to Value Education(3 hours)Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of<br/>Education) Understanding Value Education, Self-exploration as the Process for Value Education,<br/>Continuous Happiness and Prosperity – the Basic Human Aspirations, Happiness and Prosperity –<br/>Current Scenario, Method to Fulfil the Basic Human Aspirations

# P.E.S. College of Engineering, Mandya

Module - 2

**Department of Mechanical Engineering** 

Harmony in the Human Being :	(3 hours)
Understanding Human being as the Co-existence of the Self and the Body	, Distinguishing between the
Needs of the Self and the Body, The Body as an Instrument of the Self,	Understanding Harmony in
the Self, Harmony of the Self with the Body, Programme to ensure self-re	gulation and Health
Module - 3	
Harmony in the Family and Society :	(3 hours)
Harmony in the Family - the Basic Unit of Human Interaction, 'Trust'	- the Foundational Value in
Relationship, 'Respect' - as the Right Evaluation, Other Feelings, J	ustice in Human-to-Human
Relationship, Understanding Harmony in the Society, Vision for the Univ	ersal Human Order
Module - 4	
Harmony in the Nature/Existence :	(3 hours)
Understanding Harmony in the Nature, Interconnectedness, self-regula among the Four Orders of Nature, Realizing Existence as Co-existence	tion and Mutual Fulfilment at All Levels, The Holistic
Perception of Harmony in Existence	
Module - 5	
Implications of the Holistic Understanding – a Look at Professional E	thics: (3 hours)
Natural Acceptance of Human Values, Definitiveness of (Ethical) Hu Humanistic Education, Humanistic Constitution and Universal Hum Professional Ethics Holistic Technologies, Production Systems and M Case Studies, Strategies for Transition towards Value-based Life and Prof	iman Conduct, A Basis for han Order, Competence in Ianagement Models-Typical Session
Course outcome (Course Skill Set)	
At the end of the course, students are expected to become more awa	re of themselves, and their
surroundings (family, society, nature);	
<ul> <li>They would become more responsible in life, and in handling solutions, while keeping human relationships and human nature in</li> <li>They would have better critical ability</li> </ul>	problems with sustainable mind.
<ul> <li>They would also become sensitive to their commitment towards</li> </ul>	what they have understood

- They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society).
- It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

Expected to positively impact common graduate attributes like:

- 1. Ethical human conduct
- 2. Socially responsible behaviour
- 3. Holistic vision of life
- 4. Environmentally responsible work
- 5. Having Competence and Capabilities for Maintaining Health and Hygiene
- 6. Appreciation and aspiration for excellence (merit) and gratitude for all

# Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together





# **Continuous internal Examination (CIE)**

- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.
- CIE paper shall be set for 25 questions, each of the 02 marks. The pattern of the question paper is MCQ (multiple choice question). The time allotted for SEE is 01 hour. The student has to secure a minimum of 35% of the maximum marks meant for SEE.

# The sum of two tests, will be out of 100 marks and will be scaled down to 50 marks

# Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

# Semester End Examinations (SEE)

SEE paper shall be set for **50 questions**, each of the 01 marks. **The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is 01 hour.** The student has to secure a minimum of 35% of the maximum marks meant for SEE.

# Suggested Learning Resources:

**Books for** READING:

Text Book and Teachers Manual

- The Textbook A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
- The Teacher"s Manual for A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G

# **Reference Books**

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amar kantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj Pandit Sunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)
- 14. Sussan George, 1976, How the Other Half Dies, Penguin Press. Reprinted 1986, 1991
- 15. Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, William W. Behrens III, 1972, Limits to Growth Club of Rome's report, Universe Books.
- 16. A Nagraj, 1998, Jeevan Vidya Ek Parichay, Divya Path Sansthan, Amarkantak.
- 17. P L Dhar, RR Gaur, 1990, Science and Humanism, Commonwealth Publishers.
- 18. A N Tripathy, 2003, Human Values, New Age International Publishers.
- 19. SubhasPalekar, 2000, How to practice Natural Farming, Pracheen (Vaidik) KrishiTantraShodh, Amravati.
- 20. E G Seebauer & Robert L. Berry, 2000, Fundamentals of Ethics for Scientists & Engineers, Oxford University Press



- 21. M Govindrajran, S Natrajan & V.S. Senthil Kumar, Engineering Ethics (including Human Values), Eastern Economy Edition, Prentice Hall of India Ltd.
- 22. B P Banerjee, 2005, Foundations of Ethics and Management, Excel Books.
- 23. B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008.

# Web links and Video Lectures (e-Resources):

Value Education websites,

- https://www.uhv.org.in/uhv-ii,
- http://uhv.ac.in,
- http://www.uptu.ac.in
- Story of Stuff,
- http://www.storyofstuff.com
- Al Gore, An Inconvenient Truth, Paramount Classics, USA
- Charlie Chaplin, Modern Times, United Artists, USA
- IIT Delhi, Modern Technology the Untold Story
- Gandhi A., Right Here Right Now, Cyclewala Productions
- https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw
- https://fdp-si.aicte-india.org/8dayUHV_download.php
- https://www.youtube.com/watch?v=8ovkLRYXIjE
- https://www.youtube.com/watch?v=OgdNx0X923I
- https://www.youtube.com/watch?v=nGRcbRpvGoU
- https://www.youtube.com/watch?v=sDxGXOgYEKM