

P.E.S.COLLEGE OF ENGINEERING

(An Autonomous Institution, Aided by Govt. of Karnataka and Affiliated to VTU, Belgaum)

THE SOLUTION

Department of Mathematics CURRICULUM AND SYLLABUS OF MATHEMATICS

For UG: BE Regular Students

First Year B.E - Programme: First semester for Civil Engineering stream

Semesters	Course Code	Course Title	Teach	Credit Assign			
			L	Т	Р	SS	
Ι	22MATC11	Calculus, Differential Equations and Linear Algebra	02	02	02	—	04
П	22MATC21	Integral Calculus, Partial Differential Equations and Numerical methods	02	02	02	-	04

First Year B.E - Programme: First semester for Mechanical Engineering stream

Semesters	Course Code	Course Title	Teach	Credit Assign			
			L	Т	Р	SS	
Ι	22MATM11	Calculus, Ordinary Differential	02	02	02	-	04
		Equations and LinearAlgebra					
II	22MATM21	Integral Calculus, Partial Differential	02	02	02	_	04
		Equations and Numerical methods					

First Year B.E - Programme: First semester for Electrical and Electronics engineering stream

Semesters	Course Code	Course Title	Teach	Credit Assign			
			L	Т	Р	SS	
Ι	22MATE11	Calculus, Differential Equations and Linear Algebra	02	02	02	-	04
II	22MATE21	Integral Calculus, Partial Differential Equations and Numerical methods	02	02	02	-	04

First Year B.E - Programme: First semester for Computer science engineering stream

Semesters	Course Code	Course Title	Teach	Credit Assign			
			L	Т	Р	SS	
Ι	22MATS11	Calculus, Differential Equations and Linear Algebra	02	02	02	-	04
II	22MATS21	Integral Calculus, Partial Differential Equations and Numerical methods	02	02	02	-	04

L: Lecture T: Tutorial P: Practical SS: Self Study

I Semester

Course Title		Cal	culus, Diff	erential Equa	tions and l	Linear Algebra						
Course Code				22MAT	ГС11							
Category		Mathematics for Civil Engineering Stream-I										
C -1		Theo	ory/Practica	Total teaching	Cardita							
Scheme and Credits	L	Т	Р	SS	Total	hours	Creans					
Cicuits	02	02	02	00	04	40	04					
CIE Marks: 50	SEE Mark	s: 50	Total Max.	marks=100	Duration of SEE: 03 Hours							

1

Cours	e Learning Objectives:		
1	Familiarize the importance of calculus associated with one variable and two v	ariables.	
2	Analyze Engineering problems by applying Ordinary Differential Equations		
3	Develop the knowledge of Linear Algebra to solve system of equation by using	g matrices	
T T •/		No. of	hours
Unit	Syllabus content	Theory	Tutorial
Ι	Polar coordinates and curvature: Introduction, Polar coordinates, Polar curves, angle between the radius vector and the tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Pedal forms. Problems.	06	02
	Self - study: Center and circle of curvature, evolutes and involutes.		
II	 Series Expansion and Multivariable Calculus: Taylor's and Maclaurin's series expansion for one variable (Statement only) – problems. Indeterminate forms -L'Hospital's rule, problems. Partial differentiation, total derivative - differentiation of composite functions. Jacobian andproblems. Maxima and minima for a function of two variables. Problems. Self - study: Euler's theorem and problems. Method of Lagrange's undetermined multipliers with single constraint. 	06	02
III	Ordinary Differential Equations (ODEs) of first order : Linear and Bernoulli's differential equations. Exact and reducible to exact differential equations Integrating factors on $\frac{1}{N} \left[\frac{\partial M}{\partial Y} - \frac{\partial N}{\partial x} \right] and \frac{1}{M} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right]$ Applications of ODE's - Orthogonal trajectories, Newton's law of cooling. Nonlinear differential equations : Introduction to general and singular solutions, Solvable for p only, Clairaut's equations, reducible to Clairaut's equations. Problems. Self-Study : Applications of ODE's: Solvable for x and y.	06	02
IV	Ordinary Differential Equations of higher order: Higher-order linear ODE's with constant coefficients - Inverse differential operator, case (I) to case (IV), method of variation of parameters, Cauchy's and Legendre's homogeneous differential equations. Problems Self - study: Formulation and solution of Cantilever beam. Finding the solution by the method of undetermined coefficients.	06	02

 Chiear Argebra: Elementary row transformation of a matrix, Kank of a matrix. Consistency and solution of a system of linear equations - Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eigenvectors, Rayleigh's power method to find the dominant Eigen value and Eigenvector. Self-Study: Solution of a system of linear equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem. 	02
---	----

- **CO1: Describe** the translation of coordinate system, various types of series of functions, identify the variation of multivariables, and match the system of equations in matrix form
- **CO2: Explain** the graph of function relate to polar coordinates, interpret series of continuous function and demonstrate the methods to describe mathematical solution to equations related to Engineering problems.
- **CO3:** Apply the Mathematical properties to solve illustrative Engineering problems, calculate Maxima and minima of a function and calculate Eigen value relates to Eigenvector of system of equations.
- **CO4: Analyze** the Mathematical model of differential and systems of equations of more than one variable classify various solutions to problems, enumerate numerical solutions to system of equations and familiarize with modern mathematical tools namely SCILAB/PYTHON/MATLAB

TEACHING - LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos.

TEXT BOOKS

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition 2018), Khanna Publishers, New Delhi.
- 2. E. Kreysizig, Advanced Engineering Mathematics, John Wiley and sons, 10th Ed. (Reprint) 2016.

REFERENCE BOOKS

- 1. V. Ramana: Higher Engineering Mathematics, McGraw -Hill Education, 11th Ed..
- 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International PublishingHouse Pvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

ONLINE RESOURCES

- 1. <u>http://www.nptel.ac.in</u>
- 2. https://en.wikipedia.org
- 3. https://ocw.mit.edu/courses/18-03sc-differential-equations-fall-2011/
- 4. <u>https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/</u>
- 5. <u>https://math.hmc.edu/calculus/hmc-mathematics-calculus-online-tutorials/differential-equations/first-order-differential-equations/</u>

				Q	QUEST	ION PA	APER P	ATTEI	RN (SE	E)					
			P.	ART-A			PART-B								
	One question from each unit carrying two marks each						Answer any TWO sub questions for maximum 18 marks from each unit								
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO 1	1	2	2												
CO	2	2	3												
CO.	3	3	2												
CO4	1	2	3												

Strength of correlation: Low-1, Medium- 2, High-3

I Semester

Course Title	C	Calculus, Ordinary Differential Equations and Linear Algebra											
Course Code				22MAT	M11								
Category		Mathematics for mechanical engineering stream-I											
C - 1		Theo	ory/Practica	Total teaching	Cusdite								
Scheme and Credits	L	Т	Р	SS	Total	hours	Credits						
Ciedits	02	02	02	00	04	40	04						
CIE Marks: 50 SEE Marks: 50			Total Max.	marks=100	Duration of SEE: 03 Hours								

Cours	e Learning Objectives:		
1	Familiarize the importance of calculus associated with one variable and two v	ariables.	
2	Analyze Engineering problems by applying Ordinary Differential Equations		
3	Develop the knowledge of Linear Algebra to solve system of equation by using	g matrices	
		1	
TT •4		No. of	hours
Unit	Synabus content	Theory	Tutorial
Ι	Polar coordinates and curvature: Introduction, Polar coordinates, Polar curves, angle between the radius vector and the tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Pedal forms. Problems. Self - study: Center and circle of curvature, evolutes and involutes.	06	02
II	 Series Expansion and Multivariable Calculus: Taylor's and Maclaurin's series expansion for one variable (Statement only) – problems. Indeterminate forms - L'Hospital's rule, problems. Partial differentiation, total derivative - differentiation of composite functions. Jacobian and problems. Maxima and minima for a function of two variables. Problems. Self - study: Euler's theorem and problems. Method of Lagrange's undetermined multipliers with single constraint. 	06	02
III	Ordinary Differential Equations (ODEs) of first order : Linear and Bernoulli's differential equations. Exact and reducible to exact differential equations Integrating factors on $\frac{1}{N} \left[\frac{\partial M}{\partial Y} - \frac{\partial N}{\partial x} \right] and \frac{1}{M} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right]$ Applications of ODE's - Orthogonal trajectories, Newton's law of cooling. Nonlinear differential equations : Introduction to general and singular solutions, Solvable for p only, Clairaut's equations, reducible to Clairaut's equations. Problems. Self-Study: Applications of ODE's: Solvable for x and y.	06	02
IV	Ordinary Differential Equations of higher order: Higher-order linear ODE's with constant coefficients - Inverse differential operator, case-I to case-IV, method of variation of parameters, Cauchy's and Legendre's homogeneous differential equations. Problems Self - study: Formulation and solution of Cantilever beam. Finding the solution by the method of undetermined coefficients.	06	02

Self-Study: Solution of a system of linear equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem.	V	 Linear Algebra: Elementary row transformation of a matrix, Rank of a matrix. Consistency and solution of a system of linear equations - Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eigenvectors, Rayleigh's power method to find the dominant Eigen value and Eigenvector. Self-Study: Solution of a system of linear equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem. 	06	02
--	---	---	----	----

- **CO1: Describe** the translation of coordinate system, various types of series of functions, identify the variation of multivariable's, and match the system of equations in matrix form
- **CO2: Explain** the graph of function relate to polar coordinates, interpret series of continuous function and demonstrate the methods to describe mathematical solution to equations related to Engineering problems.
- **CO3:** Apply the Mathematical properties to solve illustrative Engineering problems, calculate Maxima and minima of a function and calculate Eigen value relates to Eigenvector of system of equations.
- **CO4: Analyze** the Mathematical model of differential and systems of equations of more than one variable classify various solutions to problems, enumerate numerical solutions to system of equations and familiarize with modern mathematical tools namely SCILAB/PYTHON/MATLAB

TEACHING - LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos.

TEXT BOOKS

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition 2018), Khanna Publishers, New Delhi.
- 2. E. Kreysizig, Advanced Engineering Mathematics, John Wiley and sons, 10th Ed. (Reprint) 2016.

REFERENCE BOOKS

- 1. V. Ramana: Higher Engineering Mathematics, McGraw -Hill Education, 11th Ed..
- 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International Publishing House Pvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

ONLINE RESOURCES

Γ

- 1. http://www.nptel.ac.in
- 2. <u>https://en.wikipedia.org</u>
- 3. https://ocw.mit.edu/courses/18-03sc-differential-equations-fall-2011/
- 4. https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/
- 5. <u>https://math.hmc.edu/calculus/hmc-mathematics-calculus-online-tutorials/differential-equations/first-order-differential-equations/</u>

	QUESTION PAPER PATTERN (SEE)												
		PA	RT-A			PART-B							
One	e questio	n from ea marks	ach unit o s each	carrying	two	Answer any TWO sub questions for maximum 18 marks from each unit							
	PO1	PO1 PO2 PO3 PO4 PO5 PO6				PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2											
CO2	2	3											
CO3	3	2											
CO4	2	3											
Stren	igth of c	orrelatio	on: Low-	1, Mediu	ım- 2,	High-3							

I Semester

Course Title		Calculus, Differential Equations and Linear Algebra								
Course Code		22MATE11								
Category	M	Mathematics for Electrical & Electronics Engineering Stream-I								
G 1 1		Theo	ory/Practic	Total teaching	C I'					
Scheme and Credits	L	Т	Р	SS	Total	hours	Credits			
Cicuits	02	02	02	00	04	40	04			
CIE Marks: 50	SEE Mark	s: 50	Total Max.	marks=100	Duration o	f SEE: 03 Hours				

Cours	e Learning Objectives:									
1	Familiarize the importance of calculus associated with one variable and two variables.									
2	Analyze Engineering problems by applying Ordinary Differential Equations									
3	Develop the knowledge of Linear Algebra to solve system of equation by using	g matrices								
		No. of	hours							
Unit	Syllabus content	Theory Tutori:								
Ι	 Polar coordinates and curvature: Introduction, Polar coordinates, Polar curves, angle between the radius vector and the tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Pedal forms. Problems. Self - study: Center and circle of curvature, evolutes and involutes. 	06	02							
Π	 Series Expansion and Multivariable Calculus: Taylor's and Maclaurin's series expansion for one variable (Statement only) – problems. Indeterminate forms - L'Hospital's rule, problems. Partial differentiation, total derivative - differentiation of composite functions. Jacobian andproblems. Maxima and minima for a function of two variables. Problems. Self - study: Euler's theorem and problems. Method of Lagrange's undetermined multipliers with single constraint. 	06	02							
III	Ordinary Differential Equations (ODEs) of first order : Linear and Bernoulli's differential equations. Exact and reducible to exact differential equations Integrating factors on $\frac{1}{N} \left[\frac{\partial M}{\partial Y} - \frac{\partial N}{\partial x} \right] and \frac{1}{M} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right]$ Applications of ODE's - Orthogonal trajectories, Newton's law of cooling. Nonlinear differential equations : Introduction to general and singular solutions, Solvable for p only, Clairaut's equations, reducible to Clairaut's equations. Problems. Self-Study: Applications of ODE's: Solvable for x and y.	06	02							
IV	Ordinary Differential Equations of higher order: Higher-order linear ODE's with constant coefficients - Inverse differential operator, case-I to case-IV, method of variation of parameters, Cauchy's and Legendre's homogeneous differential equations. Problems Self - study: Formulation and solution of Cantilever beam. Finding the solution by the method of undetermined coefficients.	06	02							

V	 Linear Algebra: Elementary row transformation of a matrix, Rank of a matrix. Consistency and solution of a system of linear equations - Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eigenvectors, Rayleigh's power method to find the dominant Eigen value and Eigenvector. Self-Study: Solution of a system of linear equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem. 	06	02	
---	---	----	----	--

- **CO1: Describe** the translation of coordinate system, various types of series of functions, identify the variation of multivariables, and match the system of equations in matrix form
- **CO2: Explain** the graph of function relate to polar coordinates, interpret series of continuous function and demonstrate the methods to describe mathematical solution to equations related to Engineering problems.
- **CO3:** Apply the Mathematical properties to solve illustrative Engineering problems, calculate Maxima and minima of a function and calculate Eigen value relate to Eigenvector of system of equations.
- **CO4: Analyze** the Mathematical model of differential and systems of equations of more than one variable classify various solutions to problems, enumerate numerical solutions to system of equations and familiarize with modern mathematical tools namely SCILAB/PYTHON/MATLAB

TEACHING - LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos.

TEXT BOOKS

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition 2018), Khanna Publishers, New Delhi.
- 2. E. Kreysizig, Advanced Engineering Mathematics, John Wiley and sons, 10th Ed. (Reprint) 2016.

REFERENCE BOOKS

- 1. V. Ramana: Higher Engineering Mathematics, McGraw –Hill Education,11th Ed..
- 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International PublishingHouse Pvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

- 1. http://www.nptel.ac.in
- 2. https://en.wikipedia.org
- 3. https://ocw.mit.edu/courses/18-03sc-differential-equations-fall-2011/
- 4. https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/
- 5. <u>https://math.hmc.edu/calculus/hmc-mathematics-calculus-online-tutorials/differential-equations/first-order-differential-equations/</u>

	QUESTION PAPER PATTERN (SEE)												
			P.	ART-A			PART-B						
	One question from each unit carrying two marks each Answer any TWO sub questions for maximum 18 marks from each unit								;				
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	l	2	2										
CO2	2	2	3										
CO3	3	3	2										
CO 4	1	2	3										

Strength of correlation: Low-1, Medium- 2, High-3

I Semester

Course Title		Calculus, Differential Equations and Linear Algebra								
Course Code		22MATE11								
Category		Mathematics for CSE Stream-I								
G 1 1		Theo	ory/Practica		Total teaching	C 1'				
Scheme and Credits	L	Т	Р	SS	Total	hours	Credits			
cicults	02	02	02	00	04	40	04			
CIE Marks: 50	SEE Mark	s: 50	Total Max.	marks=100	Duration o	f SEE: 03 Hours				

Cours	e Learning Objectives:									
1	Familiarize the importance of calculus associated with one variable and two variables.									
2	Analyze Engineering problems by applying Ordinary Differential Equations									
3	Develop the knowledge of Linear Algebra to solve system of equation by using	g matrices	5							
		1								
TT •4		No. of	hours							
Unit	Synadus content	Theory	Tutorial							
Ι	Polar coordinates and curvature: Introduction, Polar coordinates, Polar curves, angle between the radius vector and the tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Pedal forms. Problems.	06	02							
	Self - study: Center and circle of curvature, evolutes and involutes.									
II	 Series Expansion and Multivariable Calculus: Taylor's and Maclaurin's series expansion for one variable (Statement only) – problems. Indeterminate forms - L'Hospital's rule, problems. Partial differentiation, total derivative - differentiation of composite functions. Jacobian andproblems. Maxima and minima for a function of two variables. Problems. Self - study: Euler's theorem and problems. Method of Lagrange's undetermined multipliers with single constraint. 	06	02							
III	Ordinary Differential Equations (ODEs) of first order : Linear and Bernoulli's differential equations. Exact and reducible to exact differential equations Integrating factors on $\frac{1}{N} \left[\frac{\partial M}{\partial Y} - \frac{\partial N}{\partial x} \right] and \frac{1}{M} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right]$ Applications of ODE's - Orthogonal trajectories, Newton's law of cooling. Nonlinear differential equations : Introduction to general and singular solutions, Solvable for p only, Clairaut's equations, reducible to Clairaut's equations. Problems. Self-Study: Applications of ODE's: Solvable for x and y.	06	02							
IV	Ordinary Differential Equations of higher order: Higher-order linear ODE's with constant coefficients - Inverse differential operator, case-I to case-IV, method of variation of parameters, Cauchy's and Legendre's homogeneous differential equations. Problems Self - study: Formulation and solution of Cantilever beam. Finding the solution by the method of undetermined coefficients	06	02							

V	 Linear Algebra : Elementary row transformation of a matrix, Rank of a matrix. Consistency and solution of a system of linear equations - Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eigenvectors, Rayleigh's power method to find the dominant Eigen value and Eigenvector. Self-Study: Solution of a system of linear equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem. 	06	02	
---	--	----	----	--

- **CO1: Describe** the translation of coordinate system, various types of series of functions, identify the variation of multivariable's, and match the system of equations in matrix form
- **CO2: Explain** the graph of function relate to polar coordinates, interpret series of continuous function and demonstrate the methods to describe mathematical solution to equations related to Engineering problems.
- **CO3:** Apply the Mathematical properties to solve illustrative Engineering problems, calculate Maxima and minima of a function and calculate Eigen value relate to Eigenvector of system of equations.
- **CO4: Analyze** the Mathematical model of differential and systems of equations of more than one variable classify various solutions to problems, enumerate numerical solutions to system of equations and familiarize with modern mathematical tools namely SCILAB/PYTHON/MATLAB

TEACHING - LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos.

TEXT BOOKS

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition 2018), Khanna Publishers, New Delhi.
- 2. E. Kreysizig, Advanced Engineering Mathematics, John Wiley and sons, 10th Ed. (Reprint) 2016. **REFERENCE BOOKS**
 - 1. V. Ramana: Higher Engineering Mathematics, McGraw -Hill Education, 11th Ed..
 - 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International Publishing House Pvt. Ltd., New Delhi.
 - 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

- 1. http://www.nptel.ac.in
- 2. <u>https://en.wikipedia.org</u>
- 3. https://ocw.mit.edu/courses/18-03sc-differential-equations-fall-2011/
- 4. <u>https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/</u>
- 5. <u>https://math.hmc.edu/calculus/hmc-mathematics-calculus-online-tutorials/differential-equations/first-order-differential-equations/</u>

QUESTION F	PAPER PATTERN (SEE)
PART-A	PART-B
One question from each unit carrying two marks each	Answer any TWO sub questions for maximum 18 marks from each unit

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										
CO2	2	3										
CO3	3	2										
CO4	2	3										
Streng	Strength of correlation: Low-1, Medium- 2, High-3											

Suggested Learning Resources:

Reference Books

- Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press,3rd Ed., 2016.
- 2. C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw HillBook Co., Network, 6th Ed., 2017.
- **3.** Gupta C.B, Sing S.R and Mukesh Kumar: "Engineering Mathematic for Semester I andII", Mc-Graw Hill Education(India) Pvt. Ltd 2015.
- H. K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics" S. ChandPublication, 3rd Ed., 2014.
- 5. James Stewart: "Calculus" Cengage Publications, 7th Ed., 2019.
- 6. David C Lay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018.
- 7. Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6thEd., 2017.

II Semester

Course Title	Integral	Integral Calculus, Partial Differential Equations andNumerical methods								
Course Code				22MA]	ГС21					
Category		Mathematics for Civil Engineering Stream-II								
C -1		The	ory/Practic		Total teaching	Cradita				
Scheme and Credits	L	Т	Р	SS	Total	hours	Credits			
cicults	02	02	02	00	04	40	04			
CIE Marks: 50	SEE Mark	s: 50	Total Max.	marks=100	Duration o	f SEE: 03 Hours				

Cours	e Learning Objectives:				
1	Familiarize the fundamentals of Integral calculus, Vector calculus, Numerical	l Techniqu	les		
2	Analyze Engineering problems by applying Partial Differential Equations Me	ethods			
3	Develop the knowledge of solving engineering problems by using numerical T	echnique.			
Unit	Svllabus content	No. of hours			
		Theory	Tutorial		
Ι	Integral Calculus: Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find: Area and Volume by double integral. Problems.	06	02		
	Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions. Problems.				
	Self-Study: Volume by triple integration, Center of gravity				
	 Vector Calculus: Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems. Self-Study: Volume integral and Gauss divergence theorem. 	06	02		
III	Partial Differential Equations (PDE's) : Formation of PDE's by elimination of arbitrary constants and functions. Solution of non- homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only. Method of separation of variables. Solution of one-dimensional heat equation and wave equation by the method of separation of variables. Self-Study : Derivation of one-dimensional heat equation and wave equation.	06	02		
IV	Numerical methods-1: Finite differences: Interpolation using Newton's forward and backward difference formulae, Newton's divided difference formula (All formulae without proof). Problems. Numerical differentiation: Numerical differentiation using Newton's forward and backward interpolation formulae,(All formulae without proof)- problems only and Applications to Maxima and Minima Numerical integration: Trapezoidal rule, Simpson's (¹ / ₃) rd rule, Simpson's (³ / ₈) th rule, and Weddle's rule (All rules without proof)- Illustrative problems Self-Study: Sterling's formula, Lagrange's interpolation and Lagrange's inverse Interpolation formula. Boole's rule	06	02		

V	Numerical methods -2:		
	Solution of algebraic and transcendental equations: Regula-Falsi and		
	Newton-Raphson methods (only formulae). Problems.		
	Numerical Solution of Ordinary Differential Equations (ODE's):		
	Numerical solution of ordinary differential equations of first order and first	06	02
	degree - Taylor's series method, Modified Euler's method, Runge-Kutta		
	method of fourth order and Milne's predictor-corrector formula (No		
	derivations of formulae). Problems.		
	Self-Study: Bisection method. Euler's method Adam-Bashforth method		

- **CO1: Knowledge** to Evaluate double and triple integration and identify the scalar, vector notation of functions of two and three dimensions ,recognize the partial differential equations and Numerical differences.
- **CO2: Understand** to explain Area, Volume by double integration, change to polar coordinates describe divergence and flux in vector field; classify method of solutions of PDE's, Numerical differentiation and integrations.
- **CO3:** Apply the Mathematical properties to evaluate triple integral and improper integral to interpret the irrotational and solenoidal vector field, find the solutions to problem arises in engineering field.
- **CO4: Analyze** multiple integrals ,vector differentiations and integration, the Mathematical model by partial differential equations, Numerical solution to algebraic and transcendental, ordinary differential equations and familiarize with modern mathematical tools namely SCILAB/PYTHON/MATLAB

TEACHING - LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos.

TEXT BOOKS

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition 2018), Khanna Publishers, New Delhi.
- 2. E. Kreysizig, Advanced Engineering Mathematics, John Wiley and sons, 10th Ed. (Reprint) 2016.

REFERENCE BOOKS

- 1. V. Ramana: Higher Engineering Mathematics, McGraw -Hill Education, 11th Ed..
- 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International Publishing House Pvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

ONLINE RESOURCES

- 1. <u>http://www.nptel.ac.in</u>
- 2. <u>https://en.wikipedia.org</u>
- 3. https://ocw.mit.edu/courses/18-303-linear-partial-differential-equations-fall-2006/
- 4. https://ocw.mit.edu/courses/18-152-introduction-to-partial-differential-equations-fall-2011/
- 5. <u>http://mcatutorials.com/mca-tutorials-numerical-methods-tutorial.php</u>

QUESTION PAPER PATTERN (SEE)

PART-A	PART-B
One question from each unit carrying two marks each	Answer any TWO sub questions for maximum 18 marks from each unit

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										
CO2	2	3										
CO3	3	2										
CO4	2	3										
Streng	th of cor	relation	: Low-1,	Medium	n- 2, Higl	h-3						

Course Title	Integral	Calcul	us, Partial	Differential H	Equations	andNumerical 1	methods				
Course Code		22MATM21									
Category		Mathematics for mechanical engineering streams -II									
S -1		Theo	ory/Practica		Total teaching	Cardita					
Scheme and Credits	L	Т	Р	SS	Total	hours	Credits				
Cicuits	02	02	02	00	04	40	04				
CIE Marks: 50	SEE Mark	s: 50	Total Max.	marks=100	Duration o	f SEE: 03 Hours					

1	Familiarize the fundamentals of Integral calculus and Vector calculus			
2	Analyze Engineering problems by applying Partial Differential Equations			
2	Develop the knowledge of solving engineering problems by using numerical T	echnique.		
5		1		
II:4	Svillaburg contont	No. of hours		
Unit	Synadus content	Theory	Tutoria	
Ι	Integral Calculus: Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find: Area and Volume by double integral. Problems.	06	02	
	Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions. Problems.			
	Self-Study: Volume by triple integration, Center of gravity			
11	Vector Calculus: Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.	06	02	
	Self-Study: Volume integral and Gauss divergence theorem.			
III	Partial Differential Equations (PDE's) : Formation of PDE's by elimination of arbitrary constants and functions. Solution of non- homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only. Method of separation of variables. Solution of one-dimensional heat equation and wave equation by the method of separation of variables. Self-Study : Derivation of one-dimensional heat equation and wave equation.	06	02	
IV	Numerical methods-1: Finite differences: Interpolation using Newton's forward and backward difference formulae, Newton's divided difference formula (All formulae without proof). Problems. Numerical differentiation: Numerical differentiation using Newton's forward and backward interpolation formulae,(All formulae without proof)- problems only and Applications to Maxima and Minima Numerical integration: Trapezoidal rule, Simpson's (¹ / ₃) rd rule, Simpson's (³ / ₈) th rule, and Weddle's rule (All rules without proof)- Illustrative problems Self-Study: Sterling's formula, Lagrange's interpolation and Lagrange's inverse Interpolation formula. Boole's rule	06	02	

V	Numerical methods -2:		
	Solution of algebraic and transcendental equations: Regula-Falsi and		
	Newton-Raphson methods (only formulae). Problems.		
	Numerical Solution of Ordinary Differential Equations (ODE's):		
	Numerical solution of ordinary differential equations of first order and first	06	02
	degree - Taylor's series method, Modified Euler's method, Runge-Kutta		
	method of fourth order and Milne's predictor-corrector formula (No		
	derivations of formulae). Problems.		
	Self-Study: Bisection method. Euler's method Adam-Bashforth method		

- **CO1:** Knowledge to Evaluate double and triple integration and identify the scalar, vector notation of functions of two and three dimensions ,recognize the partial differential equations and Numerical differences.
- **CO2: Understand** to explain Area, Volume by double integration, change to polar coordinates describe divergence and flux in vector field; classify method of solutions of PDE's, Numerical differentiation and integrations.
- **CO3:** Apply the Mathematical properties to evaluate triple integral and improper integral to interpret the irrotational and solenoidal vector field, find the solutions to problem arises in engineering field.
- **CO4: Analyze** multiple integrals ,vector differentiations and integration, the Mathematical model by partial differential equations, Numerical solution to algebraic and transcendental, ordinary differential equations and familiarize with modern mathematical tools namely SCILAB/PYTHON/MATLAB

TEACHING - LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos.

TEXT BOOKS

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition 2018), Khanna Publishers, New Delhi.
- 2. E. Kreysizig, Advanced Engineering Mathematics, John Wiley and sons, 10th Ed. (Reprint) 2016.

REFERENCE BOOKS

- 1. V. Ramana: Higher Engineering Mathematics, McGraw -Hill Education, 11th Ed..
- 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International Publishing House Pvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

- 1. <u>http://www.nptel.ac.in</u>
- 2. <u>https://en.wikipedia.org</u>
- 3. https://ocw.mit.edu/courses/18-303-linear-partial-differential-equations-fall-2006/
- 4. <u>https://ocw.mit.edu/courses/18-152-introduction-to-partial-differential-equations-fall-2011/</u>
- 5. http://mcatutorials.com/mca-tutorials-numerical-methods-tutorial.php

QUESTION F	PAPER PATTERN (SEE)						
PART-A PART-B							
One question from each unit carrying two marks each	Answer any TWO sub questions for maximum 18 marks from each unit						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										
CO2	2	3										
CO3	3	2										
CO4	2	3										
Streng	th of cor	relation	: Low-1,	Medium	- 2, Higl	1-3						

II Semester

Course Title	Integral	Integral Calculus, Partial Differential Equations and Numerical methods									
Course Code 22MATE21											
Category		Mathematics for EEE streams -II									
C -l	Theory/Practical/Integrated Total teaching										
Scheme and Credits	L	Т	Р	SS	Total	hours	Credits				
Cicults	02	02	02 00		04	40	04				
CIE Marks: 50	SEE Mark	s: 50	Total Max.	marks=100	Duration o	f SEE: 03 Hours					

Cours	e Learning Objectives:			
1	Familiarize the fundamentals of Integral calculus and Vector calculus			
2	Analyze Engineering problems by applying Partial Differential Equations			
3	Develop the knowledge of solving engineering problems by using numerical T	echnique.		
Unit	Svillabus contont	No. of hours		
Umt	Synabus content	Theory	Tutorial	
Ι	Integral Calculus: Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find: Area and Volume by double integral. Problems.	06	02	
	Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions. Problems.			
	Self-Study: Volume by triple integration, Center of gravity			
11	 Vector Calculus: Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems. Self-Study: Volume integral and Gauss divergence theorem. 	06	02	
III	Partial Differential Equations (PDE's): Formation of PDE's by elimination of arbitrary constants and functions. Solution of non- homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only. Method of separation of variables. Solution of one-dimensional heat equation and wave equation by the method of separation of variables. Self-Study: Derivation of one-dimensional heat equation and wave equation.	06	02	
IV	Numerical methods-1: Finite differences: Interpolation using Newton's forward and backward difference formulae, Newton's divided difference formula (All formulae without proof). Problems. Numerical differentiation: Numerical differentiation using Newton's forward and backward interpolation formulae,(All formulae without proof)- problems only and Applications to Maxima and Minima Numerical integration: Trapezoidal rule, Simpson's (¹ / ₃) rd rule, Simpson's (³ / ₈) th rule, and Weddle's rule (All rules without proof)- Illustrative problems Self-Study: Sterling's formula, Lagrange's interpolation and Lagrange's inverse Interpolation formula. Boole's rule	06	02	

V	Numerical methods -2:		
	Solution of algebraic and transcendental equations: Regula-Falsi and		
	Newton-Raphson methods (only formulae). Problems.		
	Numerical Solution of Ordinary Differential Equations (ODE's):		
	Numerical solution of ordinary differential equations of first order and first	06	02
	degree - Taylor's series method, Modified Euler's method, Runge-Kutta		
	method of fourth order and Milne's predictor-corrector formula (No		
	derivations of formulae). Problems.		
	Self-Study: Bisection method. Euler's method Adam-Bashforth method		

- **CO1: Knowledge** to Evaluate double and triple integration and identify the scalar, vector notation of functions of two and three dimensions ,recognize the partial differential equations and Numerical differences.
- **CO2:** Understand to explain Area, Volume by double integration, change to polar coordinates describe divergence and flux in vector field; classify method of solutions of PDE's, Numerical differentiation and integrations.
- **CO3:** Apply the Mathematical properties to evaluate triple integral and improper integral to interpret the irrotational and solenoidal vector field, find the solutions to problem arises in engineering field.
- **CO4: Analyze** multiple integrals ,vector differentiations and integration, the Mathematical model by partial differential equations, Numerical solution to algebraic and transcendental, ordinary differential equations and familiarize with modern mathematical tools namely SCILAB/PYTHON/MATLAB

TEACHING - LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos.

TEXT BOOKS

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition 2018), Khanna Publishers, New Delhi.
- 2. E. Kreysizig, Advanced Engineering Mathematics, John Wiley and sons, 10th Ed. (Reprint) 2016.

REFERENCE BOOKS

- 1. V. Ramana: Higher Engineering Mathematics, McGraw -Hill Education, 11th Ed..
- 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International Publishing House Pvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

ONLINE RESOURCES

- 1. <u>http://www.nptel.ac.in</u>
- 2. https://en.wikipedia.org
- 3. https://ocw.mit.edu/courses/18-303-linear-partial-differential-equations-fall-2006/
- 4. https://ocw.mit.edu/courses/18-152-introduction-to-partial-differential-equations-fall-2011/
- 5. http://mcatutorials.com/mca-tutorials-numerical-methods-tutorial.php

QUESTION PAPER PATTERN (SEE)

PART-A	PART-B
One question from each unit carrying two marks each	Answer any TWO sub questions for maximum 18 marks from each unit

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										
CO2	2	3										
CO3	3	2										
CO4	2	3										
Streng	th of cor	relation	: Low-1,	Medium	n- 2, Hig	h-3	•		•		•	

II Semester

Course Title	Integral Calculus, Partial Differential Equations and Numerical methods							
Course Code	22MATS21							
Category	Mathematics for CSE Stream-II							
S -l		The	ory/Practic	Total teaching	Curdita			
Scheme and Credits	L	Т	Р	SS	Total	hours	Credits	
Cicuits	02 02		02 00		04	40	04	
CIE Marks: 50 SEE Marks: 50		Total Max.	otal Max. marks=100 Duration of SEE: 03 Hours					

-	Eamiliarize the fundementals of Integral calculus and Vector calculus								
1	Familiarize the fundamentals of integral calculus and vector calculus								
2	Analyze Engineering problems by applying Partial Differential Equations								
3	Develop the knowledge of solving engineering problems by using numerical T	echnique.							
		1							
Unit	Syllabus content	No. of hours							
	Synabus content	Theory	Tutoria						
Ι	Integral Calculus: Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find: Area and Volume by double integral. Problems.	06	02						
	Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions. Problems.								
	Self-Study: Volume by triple integration, Center of gravity								
11	Vector Calculus: Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems. Salf Study: Volume integral and Gauss divergence theorem	06	02						
	Sen-Study. Volume integral and Gauss divergence incorem.								
111	Partial Differential Equations (PDE's): Formation of PDE's by elimination of arbitrary constants and functions. Solution of non- homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only. Method of separation of variables. Solution of one-dimensional heat equation and wave equation by the method of separation of variables. Self-Study: Derivation of one-dimensional heat equation and wave equation.	06	02						
IV	Numerical methods-1:								
	Finite differences : Interpolation using Newton's forward and backward difference formulae, Newton's divided difference formula (All formulae without proof). Problems. Numerical differentiation: Numerical differentiation using Newton's forward and backward interpolation formulae,(All formulae without proof)-problems only and Applications to Maxima and Minima Numerical integration : Trapezoidal rule, Simpson's (¹ / ₃) rd rule, Simpson's (³ / ₈) th rule, and Weddle's rule (All rules without proof)- Illustrative problems Self-Study : Sterling's formula, Lagrange's interpolation and Lagrange's	06	02						

V	Numerical methods -2:		
	Solution of algebraic and transcendental equations: Regula-Falsi and		
	Newton-Raphson methods (only formulae). Problems.		
	Numerical Solution of Ordinary Differential Equations (ODE's):		
	Numerical solution of ordinary differential equations of first order and first	06	02
	degree - Taylor's series method, Modified Euler's method, Runge-Kutta		
	method of fourth order and Milne's predictor-corrector formula (No		
	derivations of formulae). Problems.		
	Self-Study: Bisection method. Euler's method Adam-Bashforth method		

- **CO1: Knowledge** to Evaluate double and triple integration and identify the scalar, vector notation of functions of two and three dimensions ,recognize the partial differential equations and Numerical differences.
- **CO2:** Understand to explain Area, Volume by double integration, change to polar coordinates describe divergence and flux in vector field; classify method of solutions of PDE's, Numerical differentiation and integrations.
- **CO3:** Apply the Mathematical properties to evaluate triple integral and improper integral to interpret the irrotational and solenoidal vector field, find the solutions to problem arises in engineering field.
- **CO4: Analyze** multiple integrals ,vector differentiations and integration, the Mathematical model by partial differential equations, Numerical solution to algebraic and transcendental, ordinary differential equations and familiarize with modern mathematical tools namely SCILAB/PYTHON/MATLAB

TEACHING - LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos.

TEXT BOOKS

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition 2018), Khanna Publishers, New Delhi.
- 2. E. Kreysizig, Advanced Engineering Mathematics, John Wiley and sons, 10th Ed. (Reprint) 2016.

REFERENCE BOOKS

- 1. V. Ramana: Higher Engineering Mathematics, McGraw -Hill Education, 11th Ed..
- 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International Publishing House Pvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

- 1. <u>http://www.nptel.ac.in</u>
- 2. https://en.wikipedia.org
- 3. <u>https://ocw.mit.edu/courses/18-303-linear-partial-differential-equations-fall-2006/</u>
- 4. https://ocw.mit.edu/courses/18-152-introduction-to-partial-differential-equations-fall-2011/
- 5. <u>http://mcatutorials.com/mca-tutorials-numerical-methods-tutorial.php</u>

QUESTION PAPER PATTERN (SEE)							
PART-A	PART-B						
One question from each unit carrying two marks each	Answer any TWO sub questions for maximum 18 marks from each unit						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										
CO2	2	3										
CO3	3	2										
CO4	2	3										
Streng	Strength of correlation: Low-1, Medium- 2, High-3											

Suggested Learning Resources: Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

Reference Books

- Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd Ed., 2016.
- 2. C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw Hill Book Co., Newyork, 6th Ed., 2017.
- 3. Gupta C.B, Sing S. R., and Mukesh Kumar: "Engineering Mathematic for Semester I and II", McGraw Hill Education(India) Pvt. Ltd 2015.
- 4. H. K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics" S. Chand Publication, 3rd Ed., 2014.
- 5. James Stewart: "Calculus" Cengage Publications, 7th Ed., 2019.
- 6. David C Lay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018.
- 7. Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6th Ed., 2017.