P.E.S. College of Engineering, Mandya
Department of Mechanical Engineering

SYLLABUS
(With effect from 2022-23)

Bachelor Degree
In
Mechanical Engineering

III & IV Semester

Out Come Based Education
With
Choice Based Credit System

[National Education Policy Scheme]

P.E.S. College of Engineering, Mandya - 571 401, Karnataka
[An Autonomous Institution affiliated to VTU, Belagavi,
Grant – in – Aid Institution (Government of Karnataka),
Accredited by NBA (All UG Programs), NAAC and Approved by AICTE, New Delhi]

Ph : 08232- 220043, Fax : 08232 – 222075, Web : www.pescemandya.org
VISION

“PESCE shall be a leading institution imparting quality Engineering and Management education developing creative and socially responsible professionals.”

MISSION

- Provide state of the art infrastructure, motivate the faculty to be proficient in their field of specialization and adopt best teaching-learning practices.
- Impart engineering and managerial skills through competent and committed faculty using outcome based educational curriculum.
- Inculcate professional ethics, leadership qualities and entrepreneurial skills to meet the societal needs.
- Promote research, product development and industry-institution interaction.

QUALITY POLICY

Highly committed in providing quality, concurrent technical education and continuously striving to meet expectations of stake holders.

CORE VALUES

Professionalism
Empathy
Synergy
Commitment
Ethics
About Department of Mechanical Engineering

The Department of Mechanical Engineering was established in the year 1962 during the origination of the institute. The department was granted academic autonomy in the year 2009. The department presently offers B.E in Mechanical Engineering, M Tech in Machine Design, M.Sc., (Engg.) by research and research leading to Ph.D. The present intake capacity of the department is 180 for BE, 24 for M Tech Machine Design. The department has a faculty-student ratio of 1:15 for UG courses and 1:12 for PG courses. The department has well established laboratories to meet the academic requirements of UG and PG programmes and a skilled technical faculty to train the students. The department has its own library which has a collection of about 4600 reference books. The department is accredited with NBA for 3 Years in 2019.

The department regularly organizes industrial visits, technical talk by experts from industries and institutes in contemporary areas to bridge the gap between syllabi and current corporate developments. The students are encouraged to undergo industrial training as well as to take up industry oriented projects during their academic course. Mechanical Engineering Association (MEA), formed by the students and faculty of the department regularly organizes co-curricular and extracurricular activities for the students.

Department Vision

“Be a department well recognized for its ability to develop competent mechanical engineers capable of working in global environment”

Department Mission

The Mission of the Department of Mechanical Engineering is to:

- Provide quality education by competent faculty.
- Provide adequate infrastructure and learning ambience for the development of essential technical skills.
- Inculcate a sense of higher education and research orientation.
- Foster industry interaction.

Program Educational Objectives (PEOs)

The Department of Mechanical Engineering has formulated the following programme educational objectives for the under-graduate program in Mechanical Engineering:

The Mechanical Engineering graduates will be able to:

PEO1: Use the fundamentals of basic science, mathematics and mechanical engineering, to pursue their career as engineers as well as to lead and manage teams in global organizations.

PEO2: Pursue advanced education, research and development and engage in the process of life-long learning.

PEO3: Become entrepreneurs in a responsible, professional and ethical manner to serve the society.

Program Specific Outcomes (PSOs)

Engineering graduates should be able to:

PSO1: Apply computer simulation and experimental methods in the design and development of sustainable products of mechanical systems.

PSO2: Utilize the knowledge of advanced manufacturing and condition monitoring techniques in industrial applications.
Engineering Graduates will be able to:

1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
Bachelor of Engineering (III – Semester)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Department</th>
<th>Hrs / Week</th>
<th>Credits</th>
<th>Examination Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>CIE</td>
</tr>
<tr>
<td>1</td>
<td>P21MA301</td>
<td>Transform and Numerical Analysis</td>
<td>MA</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>P21ME302</td>
<td>Basic Thermodynamics</td>
<td>ME</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>P21ME303</td>
<td>Fluid Mechanics & Machinery</td>
<td>ME</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>P21ME304</td>
<td>Manufacturing Process – I</td>
<td>ME</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>P21ME305</td>
<td>Material Science & Metallurgy</td>
<td>ME</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>P21KSK307</td>
<td>Samskrutika Kannada /</td>
<td>HSMC</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>P21KBK307</td>
<td>Balake Kannada</td>
<td>HSMC</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>OR</td>
<td>P21HSMC308</td>
<td>Employability Enhancement Skills - III</td>
<td>HSMC</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>P21AEI309</td>
<td>Innovation and Design Thinking</td>
<td>ME</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>CIE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bachelor of Engineering (IV – Semester)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Department</th>
<th>Hrs / Week</th>
<th>Credits</th>
<th>Examination Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>CIE</td>
</tr>
<tr>
<td>1</td>
<td>P21MA401</td>
<td>Applied Mathematical Methods</td>
<td>MA</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>P21ME402</td>
<td>Applied Thermodynamics</td>
<td>ME</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>P21ME403</td>
<td>Mechanics of Materials (MOM)</td>
<td>ME</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>P21ME404</td>
<td>Manufacturing Process – II</td>
<td>ME</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>P21ME405</td>
<td>Mechanical Measurements and Metrology (MMM)</td>
<td>ME</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>P21KSK407</td>
<td>Samskrutika Kannada /</td>
<td>HSMC</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>P21KBK407</td>
<td>Balake Kannada</td>
<td>HSMC</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>OR</td>
<td>P21HSMC408</td>
<td>Employability Enhancement Skills - IV</td>
<td>HSMC</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>P21AEI409</td>
<td>Internship – I</td>
<td>ME</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>CIE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bachelor of Engineering (IV – Semester)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Department</th>
<th>Hrs / Week</th>
<th>Credits</th>
<th>Examination Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>CIE</td>
</tr>
<tr>
<td>1</td>
<td>P21MA401</td>
<td>Applied Mathematical Methods</td>
<td>MA</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>P21ME402</td>
<td>Applied Thermodynamics</td>
<td>ME</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>P21ME403</td>
<td>Mechanics of Materials (MOM)</td>
<td>ME</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>P21ME404</td>
<td>Manufacturing Process – II</td>
<td>ME</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>P21ME405</td>
<td>Mechanical Measurements and Metrology (MMM)</td>
<td>ME</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>P21KSK407</td>
<td>Samskrutika Kannada /</td>
<td>HSMC</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>P21KBK407</td>
<td>Balake Kannada</td>
<td>HSMC</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>OR</td>
<td>P21HSMC408</td>
<td>Employability Enhancement Skills - IV</td>
<td>HSMC</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>P21AEI409</td>
<td>Internship – I</td>
<td>ME</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>CIE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TRANSFORM AND NUMERICAL ANALYSIS
[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – III

Course Code: P21MA301 Credits: 03
Teaching Hours/Week (L:T:P): 2-2-0 CIE Marks: 50
Total Number of Teaching Hours: 40 SEE Marks: 50

Course Learning Objectives:
- Adequate exposure to basics of engineering mathematics so as to enable them to visualize the applications to engineering problems
- Analyze periodic phenomena using concept of Fourier series, series solution of Engineering problems
- Understand Fourier transforms of functions and use it to solve initial value, boundary value problems.
- Apply Z-Transform technique to Solve difference equations and Numerical Technique to estimate interpolation, Extrapolation and area - (All formulae without proof)-problems only
- Use mathematical IT tools to analyze and visualize the above concepts.

UNIT – I
8 Hours

Fourier Series: Introduction, periodic function, even and odd functions, properties. Special waveforms - square wave, half wave rectifier, saw-tooth wave and triangular wave. Dirichlet’s conditions, Euler’s formula for Fourier series (no proof). Fourier series for functions of period 2L (all particular cases) – problems, Half Range Fourier series-Construction of Half range cosine and sine series and problems Practical harmonic analysis-Illustrative examples from engineering field.

Self-study component: Derive Euler’s formula, Fourier series in complex form.

UNIT – II
8 Hours

Partial differential equations (PDE’s): Formation of PDE’s. Solution of non-homogeneous PDE by direct integration. Solutions of homogeneous PDE involving derivative with respect to one independent variable only, Method of separation of variables(first and second order equations).

Applications of PDE’s: Various Possible solution of PDE’s Classification of second order PDE, various possible solutions for One-dimensional wave and heat equations, by the method of separation of variables. Solution of all these equations with specified boundary conditions(Boundary value problems). Illustrative examples from engineering field.

UNIT – III
8 Hours

Finite Differences and Interpolation: Forward and backward differences, Interpolation, Newton-Gregory forward and backward interpolation formulae, Lagrange’s interpolation formula and Newton’s divided difference interpolation formula (All formulae without proof)-
problems only.

Numerical Differentiation: Derivatives using Newton-Gregory forward and backward interpolation formulae, Applications to Maxima and Minima of atabulated function.

Numerical Integration: Newton-Cotes quadrature formula, Simpson’s 1/3rd rule and Simpson’s 3/8th rule. Weddle’s rule (All rules without proof)—

<table>
<thead>
<tr>
<th>Self-study component:</th>
<th>Inverse Lagrange’s Interpolation formula, Central differences.</th>
</tr>
</thead>
</table>

UNIT – IV

<table>
<thead>
<tr>
<th>8 Hours</th>
</tr>
</thead>
</table>

Fourier Transforms: Infinite Fourier transforms. Properties- linearity, scaling, shifting and modulation (no proof), Fourier sine and cosine transforms. Inverse Fourier Transforms, Inverse Fourier cosine and sine transforms. Problems. Convolution theorem and Parseval’s Identity (noproof)-problems.

<table>
<thead>
<tr>
<th>Self-study component:</th>
<th>Finite Fourier transform, Fourier transform of derivatives of functions</th>
</tr>
</thead>
</table>

UNIT – V

<table>
<thead>
<tr>
<th>8 Hours</th>
</tr>
</thead>
</table>

Z - Transforms: Definition. Z-transforms of basic sequences and standard functions. Properties-linearity, scaling, Damping rule, first and second shifting, multiplication by \(n \), initial and final value theorem (statement only)-problems. Inverse Z- transforms- problems.

Difference Equations: Definition. Formation of Difference equations, Linear & simultaneous linear difference equations with constant coefficients-problems, Solutions of difference equations using Z- transforms.

<table>
<thead>
<tr>
<th>Self-study component:</th>
<th>Convolution theorem and problems, Application to deflection of a loaded string.</th>
</tr>
</thead>
</table>

Course Outcomes: On completion of the course, student should be able to:

<table>
<thead>
<tr>
<th>CO1</th>
<th>Analyze engineering problems using the fundamental concepts in Fourier series, Fourier Transforms and Basics ideas of PDE’s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Explain various methods to find the Fourier constants, solution of PDE’s, Estimation of interpolation and find the area, solution of difference equations.</td>
</tr>
<tr>
<td>CO3</td>
<td>Apply the acquired knowledge to construct the Half- range Fourier series, Finding Fourier transforms and Inverse Laplace transforms for some standard functions.</td>
</tr>
<tr>
<td>CO4</td>
<td>Evaluate Z-transform of various functions, solutions of differential equations with initial and boundary conditions.</td>
</tr>
</tbody>
</table>

TEXT BOOKS

REFERENCE BOOKS

ONLINE RESOURCES

1. http://www.nptel.ac.in
2. https://en.wikipedia.org
4. https://www.thefouriertransform.com/

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Strength of correlation: Low-1, Medium-2, High-3
BASIC THERMODYNAMICS
[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – III

<table>
<thead>
<tr>
<th>Course Code: P21ME302</th>
<th>Semester: III</th>
<th>L-T-P: 3-0-0</th>
<th>Credits: 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Period-Lecture: 40Hrs.</td>
<td>Exam: 3Hrs.</td>
<td>Weightage: CIE:50 %; SEE: 50%</td>
<td></td>
</tr>
</tbody>
</table>

Course Learning Objectives:
The objectives of this course are to,
- Acquire knowledge of the fundamentals of thermodynamics and temperature scales.
- Determine heat, work, internal energy and enthalpy for flow and non-flow processes using First and Second law of thermodynamics.
- Determine changes in internal energy, enthalpy and entropy using T-dS relations for ideal gases.
- Identify the properties of substances on property diagrams and obtain the data from property tables.
- Apply concepts of thermodynamics in analyzing the thermal efficiencies of heat engines, Carnot cycles and the coefficients of performance for refrigerators.

Course Content

UNIT-I

Self-study component: Types of thermometers, concept of absolute scale of temperature, mechanical forms of work.

UNIT-II

First Law of Thermodynamics: Statement, application of first law of thermodynamics to a system undergoing a cyclic process and a change of state, concept of energy, energy as a property of the system. First law applied to thermodynamic processes. Definition and significance of internal energy, enthalpy and specific heats. Numerical on systems undergoing closed process. Steady flow process: First law applied to a control volume, derivation of steady flow energy equation on unit mass and time basis, application of SFEE for mechanical devices. Numerical problems.

Self-study component: Engineering application of SFEE, SFEE for unsteady flow process (Tank filling and Tank emptying).

UNIT-III

Self-study component: Available and unavailable energy, irreversibility. Concept of Exergy.
UNIT-IV

Pure substances: Definition of pure substance, two-property rule, behaviour of pure substance (steam) with reference to T-v, P-T and T-h diagrams. Definitions: Sub-cooled liquid, saturated liquid, mixture, saturated vapor, superheated vapor, triple point, critical point, sensible heat, latent heat and super heat. Properties of steam, quality of steam and its determination. Measurement of dryness fraction using throttling calorimeter, separating and throttling calorimeter. Expressions for the change in internal energy, enthalpy, work, heat, entropy in various processes, Use of Mollier chart.

Self-study component: P-v-T surface, Bucket and Barrel calorimeter.

8 Hrs

UNIT-V

Ideal and Real Gases: Concept of an ideal gas, basic gas laws, characteristic gas equation, Avogadro’s law and Universal gas constant, Vander Waal’s Equation of state, Reduced Co-ordinates, Compressibility factor and law of corresponding states. Numerical Problems. **Mixtures of Gases:** Mole fraction and mass fraction, Partial pressure and Dalton’s Law of partial pressure, Amagat’s laws of partial volumes. Internal energy, enthalpy and specific heats of gas mixtures. Simple Numerical on gas mixtures.

Self-study component: Relation between volumetric and gravimetric analysis.

7 Hrs

Text Books

Reference Books

Web Resources

1. https://www.youtube.com/watch?v=9GBMpZZtjXMandlist=PLD8E646BAB3366BC8
2. https://www.youtube.com/watch?v=xQwi9fveGTQandlist=PLD8E646BAB3366BC8andindex=2
3. https://www.youtube.com/watch?v=0jXeNaSM5Xcandlist=PLD8E646BAB3366BC8andindex=3
4. https://www.youtube.com/watch?v=UDfpFD0X4andlist=PLD8E646BAB3366BC8andindex=4
5. https://www.youtube.com/watch?v=ICToK4_dmbUandlist=PLD8E646BAB3366BC8andindex=5
6. https://www.youtube.com/watch?v=lyv8h-yWhRQandlist=PLD8E646BAB3366BC8andindex=6
7. https://www.youtube.com/watch?v=pJM9f99Ep-Iandlist=PLD8E646BAB3366BC8andindex=16
8. https://www.youtube.com/watch?v=OrEW5RKwilkandlist=PLD8E646BAB3366BC8andindex=18
9. https://www.youtube.com/watch?v=o9ueYSKj9ogandlist=PLD8E646BAB3366BC8andindex=19
Course Outcomes: At the end of the course, students will be able to,

1. **Apply** the basic concepts of thermodynamics such as system, properties, state, cycles and equilibrium on different thermodynamic processes.
2. **Apply** the fundamental concepts and laws of thermodynamics on control mass and control volume.
3. **Analyse** the performance of different thermodynamic processes and thermal systems such as Carnot cycle, heat engines, heat pumps, refrigerators and entropy by applying laws of thermodynamics.
4. **Analyse** the properties of working substances and gas mixtures on property diagrams to study the irreversibility and feasibility of the process.

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcomes</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1 Apply the basic concepts of thermodynamics such as system, properties, state, cycles and equilibrium on different thermodynamic processes.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO2 Apply the fundamental concept and laws of thermodynamics on control mass and control volume.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO3 Analyse the performance of different thermodynamic processes and thermal systems such as Carnot cycle, heat engines, heat pumps, refrigerators and entropy by applying laws of thermodynamics.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO4 Analyse the properties of working substances and gas mixtures on property diagrams to study the irreversibility and feasibility of the process.</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

SEE- Course Assessment Plan

<table>
<thead>
<tr>
<th>COs</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit I</td>
<td>Unit II</td>
<td>Unit III</td>
</tr>
<tr>
<td>CO1</td>
<td>2+9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2+9</td>
<td>2+9</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>CO4</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Application =55% Analysis = 45%
FLUID MECHANICS AND MACHINERY

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – III

<table>
<thead>
<tr>
<th>Course Code: P21ME303</th>
<th>Semester: III</th>
<th>L-T-P: 3-0-0</th>
<th>Credits: 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Period-Lecture: 40 Hrs.</td>
<td>Exam: 3 Hrs.</td>
<td>Weightage: CIE: 50%; SEE:50%</td>
<td></td>
</tr>
</tbody>
</table>

Course Learning Objectives:
The objectives of this course are to,
- Understand the basic principles and equations of fluid mechanics and its applications to the various engineering fields involving fluid flow problems.
- Understand and apply the principles of fluid statics, fluid kinematics and dynamics.
- Determine flow rates, pressure changes, minor and major head losses for pipe flow.
- Understand the basic principles, governing equations and applications of turbomachines.
- Present an overall frame work for the fluid dynamic design and performance analysis of turbomachines.

Course Content

UNIT I

Properties of fluids: Introduction, properties of fluids, viscosity, Newton’s law of viscosity, surface tension, capillarity. **Fluid statics:** Pascal’s law, fluid pressure at a point, pressure variation in a static fluid. Simple manometers and differential manometers. Total pressure, centre of pressure in vertical and inclined plane surfaces submerged in liquid. Buoyancy, Buoyant force and centre of buoyancy (concept only).

Self-study component: Bourdon’s tube pressure gauge and bellows pressure gauge.

8 Hrs

UNIT II

Fluid kinematics: Types of fluid flow, continuity equation in three dimensions (Cartesian co-ordinate system only) and velocity and acceleration, velocity potential function, stream function. **Fluid Dynamics:** Euler’s equation of motion, Bernoulli’s equation for ideal and real fluids. **Fluid Flow measurements:** Venturimeter, Orifice meter. Darcy and Chezy equations for loss of head due to friction in pipes, numerical problems, Concepts of dimensional analysis.

Self-study component: Pitot tube and its types, Minor losses in flow through pipes.

8 Hrs

UNIT III

Fundamentals of turbo machines: Parts of turbo machine, classification of turbomachines, Euler turbine equation and alternate form of Euler turbine equation and components of energy transfer. Degree of reaction, general expression for degree of reaction. Utilization factor, relation between utilization factor and degree of reaction. Condition for maximum utilization in Impulse, reaction and 50% reaction turbines. Velocity triangles for different values of degree of reaction, numerical problems.

Self-study component: Aerofoil section blade terminology.

8 Hrs

UNIT IV

Impulse turbine: Velocity triangles and power. Effect of friction and condition for maximum efficiency, Design parameters and design of Pelton turbines, numerical problems. **Reaction turbines:** Velocity triangles, power and efficiency of reaction turbines. Runner shapes for different blade speeds, design parameters and design of reaction turbines (Francis and Kaplan turbines). Draft tube: types of draft tube, design of draft tube and functions of draft tube, numerical problems.

Self-study component: Unit quantities and their significance, performance curves of impulse and reaction turbines.

8 Hrs
UNIT-V

Centrifugal Pumps: Introduction, working principle, parts, definition of manometric head, suction head, delivery head, static head, efficiencies. Manometric, mechanical and overall efficiencies, velocity diagram and work done, numerical problems, minimum starting speed, net positive suction head, priming. Multi-stage centrifugal pump for high head and high discharge, numerical problems.

8 Hrs

Self-study component: Vapour pressure and cavitation, effects of cavitation and its control.

Text Books

Reference Books

Web Resources

1. https://www.youtube.com/watch?v=vXPtNNLEOUc&list=PLbMVogVj5nJTZJHsH6uLCO00I-ffGyBEm&index=4
2. https://www.youtube.com/watch?v=lGL7Dp8xK_U&list=PLbMVogVj5nJTZJHsH6uLCO00I-ffGyBEm&index=13
3. https://www.youtube.com/watch?v=nmubCbgd_KM&list=PLbMVogVj5nJQQp3QLuzbcHrt0XncZZTiEandindex=2
4. https://www.youtube.com/watch?v=utOHXJvql9o&list=PLbMVogVj5nJQQp3QLuzbcHrt0XncZZTiEandindex=12
5. https://www.youtube.com/watch?v=VQiVVYyNks&list=PLbMVogVj5nJQQp3QLuzbcHrt0XncZZTiEandindex=8

Course Outcomes:

At the end of the course, students will be able to,

1. **Apply** the mathematical knowledge of fluid mechanics to predict the behaviour of a fluid flow.
2. **Apply** the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical engineering.
3. **Analyze** fluid flow problems with the use of fluid properties and measurement of pressure in engineering applications.
4. **Illustrate** the basic principles and operations of turbo-machines to appreciate the concept of velocity triangles for different values of reaction.
5. **Apply** the basics of fluid mechanics for the **design and analysis** of pipe flows as well as fluid machinery.
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcomes</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 01 02</td>
<td></td>
</tr>
<tr>
<td>CO1 Apply the mathematical knowledge of fluid mechanics to predict the behaviour of a fluid flow.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO2 Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical engineering.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO3 Analyse fluid flow problems with the use of fluid properties and measurement of pressure in engineering applications.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO4 Illustrate the basic principles and operations of turbo-machines to appreciate the concept of velocity triangles for different values of reaction.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO5 Apply the basics of fluid mechanics for the design and analysis of pipe flows as well as fluid machinery.</td>
<td>2 2</td>
<td></td>
</tr>
</tbody>
</table>

SEE- Course Assessment Plan

<table>
<thead>
<tr>
<th>COs</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit I</td>
<td>Unit II</td>
<td>Unit III</td>
</tr>
<tr>
<td>CO1</td>
<td>2+9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>2+9</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td></td>
<td>2+9</td>
</tr>
<tr>
<td>CO5</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Application =55% Analysis = 45%
Manufacturing Process - I

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – III

<table>
<thead>
<tr>
<th>Course Code: P21ME304</th>
<th>Semester: III</th>
<th>L-T-P: 3-0-2</th>
<th>Credits: 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Theory Teaching Hours: 40</td>
<td>Exam: 3Hrs.</td>
<td>Weightage: CIE: 50%; SEE: 50%</td>
<td></td>
</tr>
<tr>
<td>Total Laboratory Hours: 24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Learning Objectives:
The objectives of this course are to,
- Acquire basic knowledge about casting, welding and metal cutting theory which are relevant to manufacturing of engineering components.
- Give comprehensive insight regarding the mechanical equipment and operations involved to fulfill various applications.

Course Content

UNIT-I

Introduction to Casting: Concept of Manufacturing process, Casting process- Steps involved, advantages, limitations and applications of casting process. Patterns: Definition, Pattern materials, classification of patterns, Pattern allowances. Binder: Definition and types. Casting defects, causes and remedies.

Self study component: Melting furnace classification.

8 Hrs

UNIT-II

Sand Moulding: Types of sand moulds, Ingredients of moulding sand and properties, core making, principles of gating: Elements of gating system, types of gates, gating ratio, Risers: types and functions. Special Moulding Process: CO₂ moulding, Shell moulding, permanent mould casting, Pressure die casting, Squeeze Casting.

Self study component: stir casting and centrifugal casting.

8 Hrs

UNIT-III

Special types of welding: Resistance welding-principle, working principle, advantages, disadvantages and applications of the following types-Seam welding, Spot welding, Friction welding, Explosive welding. Metallurgical aspect in welding: Formation of different zones during welding, Heat Affected Zone (HAZ), Parameters affecting HAZ, Welding defects.

Self-study component: weldability and friction stir welding.

8 Hrs

UNIT-IV

Self study component: Cutting Fluids: Desired properties, types and selection.

8 Hrs

UNIT-V

Machine Tools and Mechanisms: Constructional feature of turret lathe, Turret lathe indexing mechanism, Shaping Machine-classification of shaping machine, Shaper mechanism - Crank and slotted lever quick return mechanism and hydraulic driving mechanism, Planing Machine-classification of planer - Planer mechanism -open and cross belt drive mechanism.

Self study component: Milling machine and grinding machine.

8 Hrs
Practical Content

24 Hrs

Testing of molding sand and core sand:
1. Compression, shear and permeability tests on green sand specimen.
2. Sieve analysis to find grain fineness number of base sand.

Foundry and casting:
3. Use of foundry tools and other equipments.
4. Preparation of moulds using two moulding boxes with and without Patterns (Split pattern, Core boxes).
5. Production of metal component using sand casting.

Machining processes:
6. Preparation of one model on lathe involving plain turning, facing, knurling and eccentric turning.
7. External threads cutting, V-thread and square thread.
8. Taper turning by different methods.
9. Cutting of V-groove using a shaper.
10. Surface grinding.

Text Books

Reference Books

Course Outcomes: At the end of the course, students will be able to,
1. Apply the concept of primary manufacturing processes such as casting, welding and machining.
2. Identify real-time applications of special casting, welding and Machining processes.
3. Examine the defects in casting and welding by analysing the microstructure.
4. Analyse various cutting parameters in metal cutting.
5. Prepare a report as an individual or as a team member to communicate effectively.

Web Resources
1. http://efoundry.iitb.ac.in/Academy/index.jsp
2. http://nptel.ac.in/courses/112107145/
4. https://books.google.co.in/books?id=NOotk64Grx0Candprintsec=frontcoverandsource=gbs_ge_summary_ran
decad=0#v=onepageandqandf=false
7. https://youtu.be/MD-PDz4EQAq
8. http://nptel.ac.in/courses/112105126/

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcomes</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8</td>
<td>9 10</td>
</tr>
<tr>
<td>Apply the concept of primary manufacturing processes such as casting, welding and machining.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identify real-time applications of</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
special casting, welding and Machining processes.

CO3	Examine the defects in casting and welding by analysing the microstructure.	3		
CO4	Analyse various cutting parameters in metal cutting.	3		
CO5	Prepare a report as an individual or as a team member to communicate effectively.	3	3	1

SEE- Course Assessment Plan

<table>
<thead>
<tr>
<th>COs</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit I</td>
<td>Unit II</td>
<td>Unit III</td>
</tr>
<tr>
<td>CO1</td>
<td>2+9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>2+9</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Assessment only in CIE

| Application | Analysis |
| =55% | =45% |

Total | 100 | 100% |
MATERIAL SCIENCE AND METALLURGY

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – III

<table>
<thead>
<tr>
<th>Course Code: P21ME305</th>
<th>Semester: III</th>
<th>L-T-P: 3-0-2</th>
<th>Credits: 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Theory Teaching Hours: 40</td>
<td>Exam: 3 Hrs.</td>
<td>Weightage: CIE:50%; SEE:50%</td>
<td></td>
</tr>
<tr>
<td>Total Laboratory Hours: 24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Learning Objectives:
The objectives of this course are to,
- Material science and Metallurgy perceives materials behavior and atomic characterization, interpret with the selection of materials for suitable applications.
- The course introduces basic knowledge over phase diagrams and also deals with behaviors, transformation of metals expose to different environment and heat treatment.
- Course also exposed to inculcate the knowledge over advanced materials and composite materials.

Course Content

UNIT-I

Structure of Crystalline Solids: Atomic bonding in solids, Fundamental concepts of unit cell, space lattice, Bravais lattice, Unit cells for cubic structure and HCP, study of stacking of layers of atoms in cubic structures and HCP, Calculation of atomic radius, coordination number and atomic packing factors for different cubic structures. Crystal imperfections - point, line, surface and volume defects. Diffusion Mechanisms and Fick’s laws of diffusion.

Self-study component: Crystal planes and Direction

8 Hrs

UNIT-II

Mechanical characteristics of metals: Tensile properties, true stress and true strain, Hardness, Rockwell, Vickers and Brinell hardness testing, plastic deformation - slip and twinning. Fracture type, stages in Cup and Cone fracture, fracture toughness, Griffith’s criterion. Fatigue test, S-N curves, factors affecting fatigue life and protection methods. The creep curves, Mechanism of creep.

Self-study component: ASTM standards for different mechanical tests.

8 Hrs

UNIT-III

Self-study component: Continuous Cooling Transformation (CCT) diagram.

8 Hrs

UNIT-IV

Heat Treatment and Strengthening Method: Annealing and its types, normalizing, hardening, tempering, martempering, austempering, surface hardening: case hardening, carburizing, cyaniding, nitriding, Induction hardening, hardenabilty, Jominy end-quench test.

Self-study component: Age hardening of Al and Cu alloys

8 Hrs

UNIT-V

Composites: Classification, functions of matrix and reinforcement in composites, Rule of mixture, Polymer, metal and ceramic matrix composites, carbon- carbon composites, Applications of composites.

Advanced Materials: Nanomaterials- Size-dependant properties, applications, Shape Memory Alloys (SMA) - Characteristics, applications, Metallic glasses: properties and applications.
Self-study component: Cryogenic materials

Practical Content

8 Hrs

1. Preparation of specimen for metallographic examination.
2. Rockwell Hardness test.
5. Tension test using a UTM.
9. Shear tests using UTM.
10. Bending Test using UTM.

Text Books

Reference Books

Web Resources

1. https://youtu.be/OTDVov_kw6A
4. https://nptel.ac.in/courses/112104168
5. https://archive.nptel.ac.in/courses/113/104/113104074/

Course Outcomes: At the end of the course, students will be able to,
1. Apply the fundamental concepts of material science and metallurgy.
2. Apply various heat treatment processes to ferrous and nonferrous metals.
3. Analyse materials properties, composition and their phase transformation.
4. Make use of experimental data for writing a report as an individual or as a team member to communicate effectively.

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcomes</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1 Apply the fundamental concepts of material science and metallurgy.</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 01 02</td>
<td>3</td>
</tr>
<tr>
<td>CO2 Apply various heat treatment processes to ferrous and nonferrous metals.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO3 Analyse materials properties, composition and their phase transformation.</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
CO4 | **Make use of** experimental data for writing a report as an **individual** or as a **team** member to **communicate** effectively. | 3 | 3 | 1

--- | --- | --- | --- | ---

SEE- Course Assessment Plan

<table>
<thead>
<tr>
<th>COs</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit I</td>
<td>Unit II</td>
<td>Unit III</td>
</tr>
<tr>
<td>CO1</td>
<td>2+9</td>
<td>2+9</td>
<td>2+9</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>CO4</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Note: Assessment only in CIE

Application = 55% Analysis = 45%
COMPUTER AIDED MACHINE DRAWING
[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – III

<table>
<thead>
<tr>
<th>Course Code: P21ME</th>
<th>L-T-P: 0-0-2</th>
<th>Credits: 01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Period - Lecture: 30(P) Hrs</td>
<td>Exam: 3 Hrs.</td>
<td>Weightage: CIE:50%; SEE:50%</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
The objectives of this course are to,
- Empowering the students with drafting skills and strengthens their ability to draw, read and interpret machine part.
- Assemble the machine parts using computer software and implementing the standards, codes and norms.

Course Content

Part - A

Section and Development of Solids: Sections of Pyramids, Prisms, Cone and Cylinder resting only on their bases. True shape of sections, Development of lateral surfaces.
Orthographic Views: Conversion of isometric views into orthographic projections of simple machine parts. (Bureau of Indian standards conventions are to be followed for the drawings).
Thread Forms and Fasteners: Thread terminology, sectional view of threads. ISO Metric (Internal and External), BSW (Internal and External), square and Acme threads. Hexagonal headed bolt and nut with washer (assembly).

Part - B

Assembly Drawings
Solids of Protrusion, Assembly drawing of following machine parts (3D parts to be created and assemble and then getting 2D drawing with required views, including part drawing).
Introduction to geometrical dimensioning and tolerance.
1. Screw Jack
2. I.C. Engine Connecting Rod
3. Plummer Block
4. Machine Vice

Case study
1. Identify the engineering drawings symbols using GD and T.
2. Assembly drawing of fuel injector, knuckle joint, cotter joint and riveted joints.
3. Preparing Bill of Materials for mechanical system.

Text Books

Reference Books

Course Outcomes: At the end of the course, students will be able to,
1. Apply the concepts of engineering drawing to develop mechanical components.
2. Apply the concepts of section of solids to analyse cut section of machine components.
3. Develop the mechanical components in 2D and 3D environment and assemble the same.
4. Create the components of mechanical systems using modern CAD tool.
5. Communicate effectively through sketching and drawing.

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcomes</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td>Apply the concepts of engineering drawing to develop mechanical components.</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Apply the concepts of section of solids to analyse cut section of machine components.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Develop the mechanical components in 2D and 3D environment and assemble the same.</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Create the components of mechanical systems using modern CAD tool.</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Communicate effectively through sketching and drawing.</td>
<td>3</td>
</tr>
</tbody>
</table>

Web Resources

1. https://www.youtube.com/watch?v=_qz8_sbhwY
2. https://www.youtube.com/watch?v=zO8coRhrJM0
3. https://www.youtube.com/watch?v=_qz8_sbhwY
4. https://www.youtube.com/watch?v=zO8coRhrJM0
5. https://www.youtube.com/watch?v=4hhJ0OSKVVy_gandlist=PLQL-DINb9_TXAbUK_H4JyZnhv9MW3nhG
6. https://www.youtube.com/watch?v=boyN1l3fA6g_andlist=PLQL-DINb9_TVqG1Zrw-9F-S0Ltg3T5fD
7. https://www.youtube.com/watch?v=yKl_FiUdAu4_andlist=PLQL-DINb9_TUHs8CUXYWw-Lna-Gp4Tu9g

SEE- Course Assessment Plan

<table>
<thead>
<tr>
<th>COs</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Part A</td>
<td>Part B</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Note: Assessment only in CIE
Application = 40% Develop = 60%
EMPLOYABILITY ENHANCEMENT SKILLS (EES) - III
[As per Choice Based Credit System (CBCS) & OBE Scheme]
SEMESTER – III

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>P21HSMC308</th>
<th>Credits:</th>
<th>01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P):</td>
<td>0:2:0</td>
<td>CIE Marks:</td>
<td>50</td>
</tr>
<tr>
<td>Total Number of Teaching Hours:</td>
<td>28</td>
<td>SEE Marks:</td>
<td>50</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to:
- Build Personal Branding, team binding.
- Present the data using presentation skills in a better manner.
- Understand the importance of stress management, Entrepreneurship & Business skills.
- Usage of various voices in a sentence and critical reasoning.
- Explain the basic concepts in boat and stream, geometry and trigonometry problems.
- Calculations involving Permutations and combinations, probability and logarithms.
- Explain concepts behind logical reasoning modules of analytic, syllogisms, venn diagrams and puzzles.

UNIT – I

<table>
<thead>
<tr>
<th>8 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Skills:</td>
</tr>
<tr>
<td>Verbal Ability:</td>
</tr>
<tr>
<td>Self-Study:</td>
</tr>
</tbody>
</table>

UNIT – II

<table>
<thead>
<tr>
<th>10 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative Aptitude:</td>
</tr>
<tr>
<td>Self-Study:</td>
</tr>
</tbody>
</table>

UNIT – III

<table>
<thead>
<tr>
<th>10 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical Reasoning:</td>
</tr>
<tr>
<td>Self-Study:</td>
</tr>
</tbody>
</table>
Course Outcomes: On completion of this course, students are able to:

CO – 1:	Exhibit amplified level of confidence to express themselves in English
CO – 2:	Develop the presentation skills, entrepreneurial skills by managing stress at various levels.
CO – 3:	Solve the problems based on Boats and streams, Geometry & Trigonometry, Permutations and combinations, Probability & Logarithms.
CO – 4:	Solve logical reasoning problems based on Analytical reasoning, Syllogisms, clocks and calendars, cases and Venn diagram, puzzles.

Text Book(s):
2. Essential English Grammar by Raymond Murphy, Cambridge University Press, new edition
3. The 7 habits of Highly Effective People by Stephen R. Covey
4. Quantitative aptitude by Dr. R. S Agarwal, published by S.Chand private limited.
5. Verbal reasoning by Dr. R. S Agarwal, published by S. Chand private limited.

Reference Book(s):
1. Quantitative Aptitude by Arun Sharma, McGraw Hill Education Pvt Ltd
2. CAT Mathematics by Abhijith Guha, PHI learning private limited.

Web and Video link(s):
1. NPTEL Course: Soft skills by By Prof. Binod Mishra, IIT Roorkee
 https://onlinecourses.nptel.ac.in/noc21_hs76/preview

| COURSE ARTICULATION MATRIX [Employability Enhancement Skills (EES) - III] |
|-----------------|---|---|---|---|---|---|---|---|---|---|---|
| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO-1 | - | - | - | - | - | - | - | 2 | 3 | - | - | 2 |
| CO-2 | - | - | - | - | - | - | - | 2 | 3 | 2 | 2 | - |
| CO-3 | 2 | - | - | - | - | - | - | - | - | - | - | - |
| CO-4 | 2 | - | - | - | - | - | - | - | - | - | - | - |
INNOVATION AND DESIGN THINKING

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>P21AEC309</th>
<th>Credits</th>
<th>01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L: T: P: S)</td>
<td>0:2:0</td>
<td>CIE Weightage</td>
<td>50%</td>
</tr>
<tr>
<td>Total Hours of Pedagogy</td>
<td>25</td>
<td>SEE Weightage</td>
<td>50%</td>
</tr>
<tr>
<td>Exam Hour</td>
<td>01</td>
<td>Total Marks</td>
<td>100</td>
</tr>
</tbody>
</table>

Course Category: Foundation

Preamble: This course provides an introduction to the basic concepts and techniques of engineering and reverse engineering, the process of design, analytical thinking and ideas, basics and development of engineering drawing, application of engineering drawing with computer aide.

Course Objectives:
- To explain the concept of design thinking for product and service development
- To explain the fundamental concept of design thinking
- To discuss the methods of implementing design thinking in the real world.

Module-1

Understanding Design Thinking

Module-2

Features of Design Thinking
Venn diagram of design thinking– Design thinking resources – Design thinking process Models – Design thinking methodologies

Module-3

Models to Do Design Thinking

Module-4

Design thinking for Engineering - Concept models for comparing design thinking and engineering systems thinking - The Distinctive Concept Model - The Comparative Concept Model - The Inclusive Concept Model - The Integrative Concept Model.

Module-5

Course Outcomes:
Upon the successful completion of the course, students will be able to:

<table>
<thead>
<tr>
<th>CO Nos.</th>
<th>Course Outcomes</th>
<th>Knowledge Level (Based on revised Bloom’s Taxonomy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understanding Design Thinking process</td>
<td>L2</td>
</tr>
<tr>
<td>CO2</td>
<td>Appreciate various design process procedure</td>
<td>L2</td>
</tr>
<tr>
<td>CO3</td>
<td>Generate and develop design ideas through different Technique.</td>
<td>L2</td>
</tr>
<tr>
<td>CO4</td>
<td>Identify the significance of reverse Engineering to Understand products</td>
<td>L3</td>
</tr>
<tr>
<td>CO5</td>
<td>Practice the methods, processes, and tools of Design Thinking</td>
<td>L2</td>
</tr>
</tbody>
</table>

Suggested Learning Resources:

Text Books:

References:
1. Jake Knapp, John Kersatsky and Braden Kowitz “Sprint how to solve big problems and test new ideas in just five days”
2. Tim Brown “Change by Design”
3. Steve Krug “Don't make me think; Revisited”
4. Roger Martin “The design of Business”
BASIC ENGINEERING MATHEMATICS - I

[As per Choice Based Credit System (CBCS) & OBE Scheme]
SEMESTER – III (Lateral Entry: Common to all branches)

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>P21MDIP301</th>
<th>Credits:</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P):</td>
<td>2-2-0</td>
<td>CIE Marks:</td>
<td>100</td>
</tr>
<tr>
<td>Total Number of Teaching Hours:</td>
<td>40</td>
<td>SEE Marks:</td>
<td>-</td>
</tr>
</tbody>
</table>

Course Learning Objectives: The mandatory learning course P21MADIP301 viz., Basic Engineering Mathematics-I aims to provide basic concepts of complex trigonometry, vector algebra, differential & integral calculus, vector differentiation and various methods of solving first order differential equations.

UNIT – I
8 Hours

Complex Trigonometry: Complex Numbers: Definitions & properties. Modulus and amplitude of a complex number, Argand’s diagram, De- Moivre’s theorem (without proof).

Self-study component: De-Moivre’s theorem (without proof). Roots of complex number - Simple problems.

UNIT – II
8 Hours

Differential Calculus: Polar curves –angle between the radius vector and the tangent pedal equation- Problems. Taylor’s series and Maclaurin’s series expansions- Illustrative examples.

Partial Differentiation: Elementary problems. Euler’s theorem for homogeneous functions of two variables. Total derivatives-differentiation of composite and implicit function.

Self-study component: Review of successive differentiation. Formulae for \(n^{th}\) derivatives of standard functions- Liebnitz’s theorem (without proof). Application to Jacobians, errors & approximations.

UNIT – III
8 Hours

Integral Calculus: reduction formulae for \(\sin^n x, \cos^n x, \text{and } \sin^n x \cos^m x\) and evaluation of these with standard limits-Examples. Applications of integration to area, length of a given curve, volume and surface area of solids of revolution.

Self-study component: Differentiation under integral sign (Integrals with constants limits)- Simple problems.

UNIT – IV
8 Hours

Vector Differentiation: Differentiation of vector functions. Velocity and acceleration of a particle moving on a space curve. Scalar and vector point functions. Gradient, Divergence, Curl and Laplacian (Definitions only).

Self-study component: Solenoidal and irrotational vector fields-Problems.
Ordinary differential equations (ODE’s): Introduction-solutions of first order and first degree differential equations: homogeneous, exact, lineardifferential equations of order one and equations reducible to above types.

| Self-study component: | Applications of first order and first degree ODE’s - Orthogonal trajectories of Cartesian and polar curves. Newton’s law of cooling, R-L circuits- Simple illustrative examples from engineering field. |

Course Outcomes: After the successful completion of the course, the students are able to

CO1 Explain the fundamental concepts –in complex numbers and vector algebra to analyze the problems arising in related area of engineering field.

CO2 Identify – partial derivatives to calculate rate of change of multivariate functions.

CO3 Apply - the acquired knowledge of integration and differentiation to evaluate double and triple integrals to compute length surface area and volume of solids of revolution and identify velocity, acceleration of a particle moving in a space.

CO4 Find analytical solutions by solving first order ODE’s which arising in different branches of engineering.

TEXT BOOKS

REFERENCE BOOKS

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Strength of correlation: Low-1, Medium- 2, High-3
EMPLOYABILITY ENHANCEMENT SKILLS (EES) - I
[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER - III

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>P21HDIP308</th>
<th>Credits:</th>
<th>01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P):</td>
<td>0:2:0</td>
<td>CIE Marks:</td>
<td>100</td>
</tr>
<tr>
<td>Total Number of Teaching Hours:</td>
<td>28</td>
<td>SEE Marks:</td>
<td>-</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to:

- Get introduced to some of the concepts of soft skills and enhance communication skills
- Recognize common mistakes done by an individual in the course of his / her communication
- Write effective emails
- Identify their strengths, weakness, opportunities and threats
- Understand the basic rules of sentence structures
- Understand the correct usage of parts of speech, tenses and articles
- Explain divisibility roles, properties of various types of numbers
- Explain application of percentage in our daily life
- Describe the concepts of profit, loss, discounts
- Explain concepts behind logical reasoning modules of arrangements and blood relations

UNIT – I

| 10 Hours
| Soft Skills: LSRW, Listening, communication skills (verbal and non-verbal skills), public speaking, Email writing, SWOT Analysis |
| Self-Study: Motivation and Time Management |

UNIT – II

| 10 Hours
| Verbal Ability: Parts of Speech - Prepositions, Adjectives and Adverbs; Tenses, Articles, Idioms and Phrasal verbs, Subject verb agreement, Synonyms and Antonyms |
| Self-Study: Para jumbles and one word substitution |

UNIT – III

| 8 Hours
| Quantitative Aptitude: Number system, Percentage, Profit & Loss |
| Logical Reasoning: Blood Relations and Arrangements |
| Self-Study: Speed Maths |
Course Outcomes

On completion of this course, students are able to:

CO – 1:	Exhibit amplified level of confidence to express themselves in English
CO – 2:	Understand the correct usage of tenses and articles
CO – 3:	Increase the number of words in his/her day to day
CO – 4:	Solve logical reasoning problems based on blood relations and arrangements
CO - 5:	Solve the problems based on number system, percentage and profit & loss

Text Book(s):

2. Essential English Grammar by Raymond Murphy, Cambridge University Press, new edition
3. The 7 habits of Highly Effective People by Stephen R. Covey
4. Quantitative aptitude by Dr. R. S Agarwal, published by S.Chand private limited.
5. Verbal reasoning by Dr. R. S Agarwal, published by S. Chand private limited.

Reference Book(s):

1. Quantitative Aptitude by Arun Sharma, McGraw Hill Education Pvt Ltd
2. CAT Mathematics by Abhijith Guha, PHI learning private limited.

Web and Video link(s):

1. Improve Your English Communication Skills Specialization
 https://www.coursera.org/specializations/improve-english

COURSE ARTICULATION MATRIX [Employability Enhancement Skills (EES) - I]

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-1</td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO-2</td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO-3</td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO-4</td>
<td>2</td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO-5</td>
<td>2</td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
P.E.S. College of Engineering, Mandya
Department of Mechanical Engineering

APPLIED MATHEMATICAL METHODS
[As per Choice Based Credit System (CBCS) & OBE Scheme]
SEMESTER – IV (COMMON TO CV, MEC, IP, AUT)

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>21MA401A</th>
<th>Credits:</th>
<th>03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P):</td>
<td>2-2-0</td>
<td>CIE Marks:</td>
<td>50</td>
</tr>
<tr>
<td>Total Number of Teaching Hours:</td>
<td>40</td>
<td>SEE Marks:</td>
<td>50</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
- Adequate exposure to basics of engineering mathematics so as to enable them to visualize the applications to engineering problems.
- Analyze the concept of complex variables in terms real variables
- Understand the concept of statistical methods to fit curves of samples and correlation and regression analysis
- To have a insight into numerical techniques to find solution of equations having no annalistic solutions
- Provide insight into develop probability distribution of discrete and continuous random variables Testing hypothesis of sample distribution
- Special functions familiarise the power series solution to analyse the problems in ordinary differential equations

UNIT – I
8 Hours

Calculus of complex functions: Introduction to functions of complex variables. Definitions of limit, continuity and differentiability, Analytic functions: Cauchy- Riemann equations in Cartesian and polar forms (no proof) and consequences.Applications to flow problems. Construction ofanalytic functions: Milne-Thomson method-Problems.

Conformal transformations: Introduction. Discussion of transformations \(\varphi = z^2, \varphi = e^z, \varphi = z+1/z , (\varphi \neq 0) \). Bilineartransformations- Problems.

Self-study component: Derivation of Cauchy- Riemann equation in Cartesian and polar Forms.

UNIT – II
8 Hours

Complex integration: complex line integrals. Cauchy theorem, Cauchy integral formula, Taylor’s and Laurent’s series (Statements only) and illustrative examples. Singularities, poles and residues. (Statement only).Examples.

Curve Fitting: Curve fitting by the method of least squares, fitting the curves of the forms \(y = a + bx \), \(y = bx^c \) \(y = bx^c + cx^d \) \(y = bx^c + cx^d + e \)

Statistical Methods: Correlation and regression-Karl Pearson’s coefficient of correlation and rank correlation- problems, Regression analysis, lines of regression, problems.

Self-study component: Contour integration Type-I & Type-II.

UNIT – III
8 Hours

Solution of algebraic and transcendental equations: Introduction, Bisection method, Regula-Falsi & Newton-Raphson method :- Illustrative examples only.

Numerical solution of ordinary differential equations (ODE’s): Numerical solutions of ODE’s of first order and first degree – Introduction. Taylor’s series method. Modified Euler’s method, Runge - Kutta method of fourth order (All formulae without proof), Illustrative examples only.

Numerical methods for system of linear equations- Gauss-Jacobi and Gauss-Seidel iterative methods. Determination of largest eigen value and
Self-study component:
Solution of equations using secant method, Picards method.

<table>
<thead>
<tr>
<th>UNIT – IV</th>
<th>8 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random variables and Probability Distributions: Review of random variables. Discrete and continuous random variables-problems. Binomial, Poisson, Exponential and Normal distributions (with usual notation of mean and variance)-problems.</td>
<td></td>
</tr>
<tr>
<td>Joint Probability Distributions: Introduction, Joint probability and Joint distribution of discrete random variables and continuous random variables</td>
<td></td>
</tr>
</tbody>
</table>

Self-study component:
Geometric and Gamma distributions- problems.

<table>
<thead>
<tr>
<th>UNIT – V</th>
<th>8 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special functions: Power series solution of a second order ODE, Series solution-Frobenius method. Series solution of Bessel’s differential equation leading to $J_n(x)$. Expansions for $J_1(x)$ and $J_2(x)$. Series solutions of Legendre’s differential equation leading to $P_n(x)$ - Legendre’s polynomials. Rodrigue’s formula (No Proof) - simple illustrative examples</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Self-study component:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics of Power series; analytic, singular point and basic recurrence relations.</td>
</tr>
</tbody>
</table>

Course Outcomes:
On completion of the course, student should be able to:

CO1	Apply the concepts of an analytic function and their properties to solve the problems arising in engineering field
CO2	Use the concept of correlation and regression analysis to fit a suitable mathematical model for the statistical samples arise in engineering field
CO3	Explain various numerical techniques to solve equations approximately having no analytical solutions.
CO4	Interpret discrete and continuous probability distributions in analyzing the probability models and solve problems involving Markov chains.
CO5	Estimate the series solutions of ordinary difference equation.

TEXT BOOKS

REFERENCE BOOKS
ONLINE RESOURCES

1. http://www.nptel.ac.in
2. https://en.wikipedia.org

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Strength of correlation: Low-1, Medium- 2, High-3
APPLIED THERMODYNAMICS

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – IV

<table>
<thead>
<tr>
<th>Course Code: P21ME402</th>
<th>Semester: IV</th>
<th>L-T-P: 3-0-0</th>
<th>Credits: 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Period - Lecture: 40Hrs.</td>
<td>Exam: 3 Hrs.</td>
<td>Weightage: CIE: 50%; SEE: 50%</td>
<td></td>
</tr>
</tbody>
</table>

Course Learning Objectives:

The objectives of this course are to,

- Apply thermodynamic concepts to understand the working of air standard and vapor power cycles.
- Determine the performance of air standard and vapor power cycles.
- Describe the working of mechanical systems involving compressors, refrigerators and IC engines.
- Determine the performance parameters of systems involving compressors, refrigerators and IC engines.

Course Content

UNIT-I

Self study component: P-V and T-S diagrams, description of Dual cycle, Sterling cycle, Atkinson cycle.

9 Hrs

UNIT-II

Self study component: Ideal cycles for jet propulsion, turbo jet cycle, turbo jet, ram jet and turbo prop engines.

9 Hrs

UNIT-III

Self study component: Brief explanation of rotary compressors, fans and blowers.

7 Hrs

UNIT-IV

Refrigeration: Introduction, Units of refrigeration and COP, Refrigerants and Properties of good refrigerants, refrigerating effect, capacity, power required to drive the compressor. Analysis of Mechanical vapor compression refrigeration systems with T-s and P-h diagrams, effect of sub-cooling and super-heating. numerical problems. **Psychrometry:** Psychrometric properties, relations, processes, chart, summer and winter air conditioning systems, numerical problems.

Self study component: Vapor absorption refrigeration system and steam jet refrigeration

8 Hrs
UNIT V

7 Hrs

Self-study component: Combustion in I C engines, delay period and factors affecting delay period. Diesel knock and methods of controlling diesel knock.

Text Books

Reference Books

Web Resources
1. https://www.youtube.com/watch?v=LUZrZJJ7zNQ
2. https://www.youtube.com/watch?v=lhilSmE2Ee0&list=PL6Qggk0O9yRltYPKm51jEnZoM-mSOM4XA&index=2
3. https://www.youtube.com/watch?v=V3Cc_TkJh6Q&list=PL6Qggk0O9yRltYPKm51jEnZoM-mSOM4XA&index=3

Course Outcomes: At the end of the course, students will be able to,
1. **Apply** the knowledge of thermodynamics to describe the different thermodynamic cycles.
2. **Apply** the basic principles of thermodynamics to describe the working of mechanical systems involving various power producing and power absorbing machines.
3. **Analyze** the performance of air standard cycles and vapor power cycles.
4. **Analyze** the performance parameters of air compressors, refrigerators and I C engines.

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcomes</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>01</td>
</tr>
</tbody>
</table>

P21 Scheme - III & IV Semester Syllabus
CO1 Apply the knowledge of thermodynamics to describe the different thermodynamic cycles. 3

CO2 Apply the basic principles of thermodynamics to describe the working of mechanical systems involving various power producing and power absorbing machines. 3

CO3 Analyze the performance of air standard cycles and vapor power cycles. 3

CO4 Analyze the performance parameters of air compressors, refrigerators and I C engines. 3

<table>
<thead>
<tr>
<th>COs</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit I</td>
<td>Unit II</td>
<td>Unit III</td>
</tr>
<tr>
<td>CO1</td>
<td>2+9</td>
<td>2+9</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2+9</td>
<td>2+9</td>
<td>2+9</td>
</tr>
<tr>
<td>CO3</td>
<td>9</td>
<td>9</td>
<td>2+9</td>
</tr>
<tr>
<td>CO4</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

| | 20 | 20 | 20 | 20 | 100 | 100% |

Application =55% Analysis = 45%

SEE- Course Assessment Plan
MECHANICS OF MATERIALS
[As per Choice Based Credit System (CBCS) & OBE Scheme]
SEMESTER – IV

Course Code: P21ME403
Semester: IV
L-T-P: 3-0-0
Credits: 03

Contact Period - Lecture: 40 Hrs.
Exam: 3 Hrs.
Weightage: CIE:50%; SEE:50%

Course Learning Objectives:
The objectives of this course are to,
- Understand the basic concepts of stress, strain and deformation of mechanical elements subjected to axial, bending and torsional loads.
- Analyze shear force, bending moment in beams and crippling load in columns.

Course Content

UNIT-I
Simple stresses and strains: Stress, types, Saint Venant’s principle, stress-strain curve for mild steel, working stress, proof stress, factor of safety, Hooke’s law, modulus of elasticity, strain energy, proof resilience, longitudinal strain, lateral strain, poison’s ratio, stress strain analysis of bars of uniform cross section, stepped bars, circular bar with continuously varying section, principle of superposition. Modulus of rigidity, bulk modulus, relation among elastic constants.
7 Hrs
Self study component: Rectangular bar with continuously varying section, volumetric strain.

UNIT-II
Compound bars: Stress analysis of composite bars. Thermal stresses in uniform and compound bars.
Compound stresses: Principal planes and stresses, plane of maximum shear stress in general 2D system. Mohr’s circle diagram (2D).
8 Hrs
Self study component: Strain on inclined plane due to normal stress in X and Y directions.

UNIT-III
Shear force and Bending Moment Diagrams (SFD and BMD): Types of beams, loads and supports, shear force and bending moment, sign conventions, point of contraflexure, and relationship between load intensity, shear force and bending moment. SFD and BMD for different beams subjected to concentrated loads, uniformly distributed load, uniformly varying load and inclined loads.
8 Hrs
Self study component: Applications of beams.

UNIT-IV
Bending and shear stresses in Beams: Theory of simple bending, assumptions in simple bending, relationship between bending stresses and radius of curvature, relationship between bending moment and radius of curvature, section modulus. Bending stresses in beams of uniform section. Shearing stresses in beams, shear stress across rectangular, I and T sections. (Moment of Inertia to be provided for numerical problems).
Deflection of Beams: Introduction, Differential equation of deflection; Flexural rigidity, Macaulay’s method for simply supported beams with point load and UDL.
9 Hrs
Self study component: Beam of uniform strength-uniform beam of rectangular section replaced by beam of constant depth and width.
UNIT-V

Torsional stresses: Introduction to torsion, pure torsion, assumptions, derivation of torsional equation, polar modulus, torsional rigidity and torque transmitted by solid and hollow circular shafts.
Columns: Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation for columns with Both ends hinged and Both ends fixed, Limitations of Euler’s theory, Rankine’s formula.

8 Hrs

Self study component: Euler equation for one end fixed and other end is free, and one end fixed and the other end is hinged.

Text Books

Reference Books

Web Resources

1. https://www.youtube.com/watch?v=GkFgysZC4Vc&list=PL27C4A6AEA552F9E6&ab_channel=nptelhrd
2. https://www.youtube.com/watch?v=vC8h1RF-KYs&ab_channel=IITDelhiJuly2018
3. https://www.youtube.com/watch?v=tao5K9Kihrs&ab_channel=IITDelhiJuly2018
4. https://www.youtube.com/watch?v=pN8zj44_DoY&ab_channel=Mechanicsofsolids
5. https://www.youtube.com/watch?v=1txkFwWWYds&t=759s&ab_channel=StructuralAnalysis-I
6. https://www.youtube.com/watch?v=CnONQoxubLw&ab_channel=nptelhrd
7. https://www.youtube.com/watch?v=wJWt0dcgafs&ab_channel=nptelhrd

Course Outcomes:

At the end of the course, students will be able to:

1. **Apply** the concepts of normal stresses, strain, shear stress, bending stress torsional stress and buckling stress in mechanical components.
2. **Apply** the fundamentals of thermal stress and compound stresses in bars of uniform and compound section.
3. **Analyse** the uniform, stepped, compound bars, beams for different cross section and columns.
4. **Analyse** the beams for deflection using Macaulay’s method.
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcomes</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Apply the concepts of normal stresses, strain, shear stress, bending stress, torsional stress and buckling stress in mechanical components.</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Apply the fundamentals of thermal stress and compound stresses in bars of uniform and compound section.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Analyse the uniform, stepped, compound bars, beams for different cross section and columns.</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Analyse the beams for deflection using Macaulay’s method.</td>
<td>3</td>
</tr>
</tbody>
</table>

SEE- Course Assessment Plan

<table>
<thead>
<tr>
<th>COs</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit I</td>
<td>Unit II</td>
<td>Unit III</td>
</tr>
<tr>
<td>CO1</td>
<td>2+9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2+9</td>
<td>2+9</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>CO4</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

| | 20 | 20 | 20 | 20 | 20 | 100 |

Application = 55% Analysis = 45%
MANUFACTURING PROCESS-II
[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – IV

<table>
<thead>
<tr>
<th>Course Code: P21ME404</th>
<th>Semester: IV</th>
<th>L-T-P: 3-0-2</th>
<th>Credits: 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Theory Teaching Hours: 40</td>
<td>Exam: 3 Hrs.</td>
<td>Weightage: CIE: 50 %; SEE: 50%</td>
<td></td>
</tr>
<tr>
<td>Total Laboratory Hours: 24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Learning Objectives:
The objectives of this course are to,
• Understand the basic metal forming processes of forging, rolling, extrusion, drawing, sheet metal forming and powder metallurgy.
• Give complete insight regarding the mechanical equipment and operations involved to fulfil various applications.

Course Content

UNIT-I

Introduction to Metal Working: Classification of metal working processes, characteristics of wrought products, advantages and limitations of metal working processes. Effect of parameters in metal forming process - Temperature, strain rate, friction and lubrication, hydrostatic pressure in metalworking, Deformation zone geometry, workability of materials, residual stresses in wrought products.

Self study component: Concepts of biaxial and triaxial stresses, plane stress and plane strain. 8 Hrs

UNIT-II

Self study component: Hand forging equipments and operations. 8 Hrs

UNIT-III

Self study component: Extrusion of brittle metals. 8 Hrs

UNIT-IV

Self study component: Parameters affecting drawability. 8 Hrs

UNIT-V

Self study component: Safety and environmental aspects of powder metallurgy. 8 Hrs
Practical Content

<table>
<thead>
<tr>
<th></th>
<th>24 Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Use of forging tools and equipments.</td>
</tr>
<tr>
<td>2.</td>
<td>Preparing model involving upsetting, drawing and bending operations, along with length and volume calculations.</td>
</tr>
<tr>
<td></td>
<td>i. Model-I</td>
</tr>
<tr>
<td></td>
<td>ii. Model-II</td>
</tr>
<tr>
<td></td>
<td>iii. Model-III</td>
</tr>
<tr>
<td>3.</td>
<td>Use of sheet metal tools and equipments.</td>
</tr>
<tr>
<td>4.</td>
<td>Preparing sheet metal model.</td>
</tr>
<tr>
<td></td>
<td>i. Model-I</td>
</tr>
<tr>
<td></td>
<td>ii. Model-II</td>
</tr>
<tr>
<td></td>
<td>iii. Model-III</td>
</tr>
<tr>
<td>5.</td>
<td>Demonstration on extrusion honing process.</td>
</tr>
<tr>
<td>6.</td>
<td>Demonstration of forming the parts from metallic powders.</td>
</tr>
</tbody>
</table>

Text Books

Reference Books

Course Outcomes: At the end of the course, students will be able to,

1. Apply the concept of metal forming processes, types and applications.
2. Apply the knowledge of metal forming processes for production of engineering parts.
3. Analyse the various process parameters in metal forming processes.
4. Make use of experimental data for writing a report as an individual or as a team member to communicate effectively.

Web Resources

1. http://nptel.ac.in/courses/112107145/
3. https://youtu.be/Xf08dgmlwXg
4. https://youtu.be/9RtAis5pog

Course Articulation Matrix

<table>
<thead>
<tr>
<th></th>
<th>Course Outcomes</th>
<th>Program Outcomes</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Apply the concept of metal forming processes, types and applications.</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>01 02</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CO2 | **Apply** the knowledge of metal forming processes for production of engineering parts. | 3 |

CO3 | **Analyse** the various process parameters in metal forming processes. | 3 |

CO4 | **Make use of** experimental data for writing a report as an individual or as a team member to communicate effectively. | 3 3 |

SEE- Course Assessment Plan

<table>
<thead>
<tr>
<th>COs</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit I</td>
<td>Unit II</td>
<td>Unit III</td>
</tr>
<tr>
<td>CO1</td>
<td>2+9</td>
<td></td>
<td>2+9</td>
</tr>
<tr>
<td>CO2</td>
<td>9</td>
<td>2+9</td>
<td>2+9</td>
</tr>
<tr>
<td>CO3</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>CO4</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Note: Assessment only in CIE

Application = 64% Analysis = 36%
MECHANICAL MEASUREMENTS AND METROLOGY

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – IV

<table>
<thead>
<tr>
<th>Course Code: P21ME405</th>
<th>Semester: IV</th>
<th>L-T-P: 3-0-2</th>
<th>Credits: 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Theory Teaching Hours: 40</td>
<td>Exam: 3 Hrs.</td>
<td>Weightage: CIE:50%; SEE:50%</td>
<td></td>
</tr>
<tr>
<td>Total Laboratory Hours: 24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Learning Objectives:
The objectives of this course are to,

- The basic concepts of measurement and metrology, and strengthening their knowledge about advancements in system of limits, fits, tolerances and gauging of mechanical elements.
- The various measuring equipment’s and use of this in industry for quality inspection.

Course Content

UNIT-I

Basic Concepts of Measurement and Metrology: Definition and significance of measurement, Generalized measurement system, Performance characteristics of measuring instruments (Only static characteristics), Inaccuracy of Measurements, Definition and objectives of metrology. Standards, Line and end standard, Wave length standard, Transfer from line to end standard. Slip gauges, Wringing phenomena, Numerical problems on building of slipgauges and calibration of end bars.

8 Hrs

Self study component: Imperial standard yard and International Prototype meter

UNIT-II

System of Limits, Fits, Tolerances and Gauging: Definition of tolerance, specification in assembly, Principle of interchangeability and selective assembly. Concept of limits of size and tolerances, Compound tolerances, accumulation of tolerances. Definition of fits, types of fits. Hole basis system and shaft basis system, Geometric dimensioning and tolerancing. Classification of gauges, Basic concept of design of gauges (Taylor's principles), wear allowance on gauges. Types of gauges -plain plug gauge, ring gauge, snap gauge, gauge materials, numerical problems on gauge design

8 Hrs

Self study component: Limit gauges for tapers.

UNIT-III

Comparators: Characteristics and classification of comparators. Mechanical comparators- Johnson Mikrokator, Sigma Comparators, Optical Comparators -principles, Zeiss ultra-optimeter, Electric and Electronic Comparators, LVDT, Pneumatic Comparators, Solex Comparator. Back Pressure gauges, **Surface Roughness and Metrology of Screw Thread:** Surface roughness terminology, Methods of measuring surface roughness, Taylor-Hobson Talysurf, Analysis of surface traces, Measurement of basic elements of thread, worked examples.

8 Hrs

Self study component: Measurements of alignment using Autocollimator

UNIT-IV

Transducers: Introduction, Transfer efficiency, classification of transducers. Mechanical Transducers: diaphragms, bellows. Electrical transducers: sliding contact resistive type, capacitive transducer, Piezo-Electric transducer. **Signal Conditioning:** Inherent problems in Mechanical systems, Electrical intermediate modifying devices, Input circuitry-simple current sensitive circuit, Electronic amplifiers, Filters, Types of filters, telemetry.

8 Hrs

Self study component: Applications of Transducers.

UNIT-V

Strain Measurement: Methods of strain measurement, Strain gauges, Preparation and mounting of
strain gauges. **Measurement of Force:** Introduction, Proving ring. **Measurement of Torque:** Introduction, Hydraulic dynamometer. **Measurement of Pressure:** Introduction, McLeod gauge, Pirani Gauge. **Temperature Measurement:** Thermocouple, Laws of thermocouple, Thermocouple materials.

8 Hrs

Self study component: Pyrometers, Optical pyrometers.

Practical Content

24 Hrs

6. Calibration of LVDT.
7. Measurements of Surface roughness using Tally surf.
8. Mechanical Comparator.

Text Books

Reference Books

Web Resources

2. https://youtu.be/-_q28_sbh8Y
6. https://youtu.be/fbk0_nPNUGE
8. https://youtu.be/Hi7NUJdzmc0
9. https://youtu.be/2vgkxHe_24g

Course Outcomes: At the end of the course, students will be able to,

1. **Apply** fundamentals of metrology and measurement
2. **Design** tolerances and fits for selected product quality
3. Analyze appropriate method and instruments for inspection of various mechanical systems.
4. Make use of experimental data for writing a report as an individual or as a team member to communicate effectively.

<table>
<thead>
<tr>
<th>Course Articulation Matrix</th>
<th>Course Outcomes</th>
<th>Program Outcomes</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO1</td>
<td>Apply fundamentals of metrology and measurement.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>Design tolerances and fits for selected product quality.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>Analyze appropriate method and instruments for inspection of various mechanical systems.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>Make use of experimental data for writing a report as an individual or as a team member to communicate effectively.</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

SEE- Course Assessment Plan

<table>
<thead>
<tr>
<th>COs</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit I</td>
<td>Unit II</td>
<td>Unit III</td>
</tr>
<tr>
<td>CO1</td>
<td>2+9</td>
<td>2+9</td>
<td>2+9</td>
</tr>
<tr>
<td>CO2</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>CO4</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Note: To be assessed only in CIE

Application =55% Design=9% Analysis = 36%
FLUID MEASUREMENT AND MACHINERY LABORATORY
[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – IV

Course Code: P21MEL406 Semester: IV L-T-P: 0-0-2 Credits: 1
Contact Period-Lecture: 30(P) Hrs. Exam: 3 Hrs. Weightage: CIE:50%; SEE:50%

Course Learning Objectives:
The objectives of this course are to,
- Understand the basic measurement techniques of fluid flow.
- Evaluate the performance of vanes, turbines, pumps, compressor and blower.
- Provide training to students to enhance their practical skills.
- Develop team qualities and ethical principles.

Course Content

PART-A 10 Hrs

Exp-1 Calibration of Venturi meter and determination of its co-efficient of discharge.
Exp-2 Calibration of Orifice meter and determination of its co-efficient of discharge.
Exp-3 Calibration of V-Notch for flow through channel.
Exp-4 Determination of coefficient of friction in flow through pipes.
Exp-5 Determination of Vane efficiency (Coefficient of impact) for different vanes.

PART-B 20 Hrs

Exp-6 Performance test on Pelton wheel Turbine.
Exp-7 Performance test on Centrifugal Pump.
Exp-8 Performance test on Reciprocating Pump.
Exp-9 Performance test on Two Stage Reciprocating Air Compressor.
Exp-10 Performance test on Air Blower.

Reference Books

Course Outcomes: At the end of the course, students will be able to,
1. Apply Bernoulli’s principle to determine flow rate, pressure changes for flow through pipes and examine the fluid flow rate in an open channel.
2. Compare the effect of friction in pipes of different materials.
3. Analyse the performance parameters of vanes, turbine, pumps, compressor and blower.
4. Make use of experimental data for writing a report as an individual or as a team member to communicate effectively.

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcomes</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1 Apply Bernoulli’s principle to determine flow rate, pressure changes</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>01 02</td>
</tr>
</tbody>
</table>

P21 Scheme - III & IV Semester Syllabus Page 48
for flow through pipes and examine the fluid flow rate in an open channel.

CO2 Compare the effect of friction in pipes of different materials.
3 1 1

CO3 Analyse the performance parameters of vanes, turbine, pumps, compressor and blower.
3 3 2

CO4 Make use of experimental data for writing a report as an individual or as a team member to communicate effectively.
3 3

SEE- Course Assessment Plan

<table>
<thead>
<tr>
<th>COs</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Part A</td>
<td>Part B</td>
<td>Viva- Voce</td>
</tr>
<tr>
<td>CO1</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>25</td>
<td>10</td>
</tr>
</tbody>
</table>

Application =16% Analysis = 64% Communication =20%

P21 Scheme - III & IV Semester Syllabus Page | 49
EMPLOYABILITY ENHANCEMENT SKILLS (EES) - IV

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMMESTER – IV

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>P21HSMC408</th>
<th>Credits:</th>
<th>01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P):</td>
<td>0:2:0</td>
<td>CIE Marks:</td>
<td>50</td>
</tr>
<tr>
<td>Total Number of Teaching Hours:</td>
<td>28</td>
<td>SEE Marks:</td>
<td>50</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to:
- Solve problems on ages, mixtures and alligations and progressions.
- Understand the concepts of Data interpretation, crypt arithmetic and data sufficiency.
- Understand the basic concepts of C programming language.
- Apply programming constructs of C language to solve the real-world problem.
- Explore user-defined data structures like arrays, structures and pointers in implementing solutions to the problems.
- Design and Develop solutions to problems using functions.

UNIT – I

10 Hours

Quantitative Aptitude: Problems on Ages, Mixtures and Alligations, Progressions.

Logical Reasoning: Data Interpretation, Cryptarithmetic, Data sufficiency.

Self-Study: Sequential output tracing

UNIT – II

08 Hours

C Programming: Data types and Operators, Control statements, Looping, Arrays and Strings

Self-Study: Pre-processors

UNIT – III

10 Hours

C Programming: Functions, Recursion, Structure, Pointers, Memory management.

Self-Study: Enum and Union

Course Outcomes: On completion of this course, students are able to:

CO – 1: Solve the problems based on ages, Mixtures, alligations and progressions.

CO – 2: Apply suitable programming constructs of C language to solve the given problem.

CO – 3: Design and Develop solutions to problems using functions and recursion.

Text Book(s):

1. Quantitative aptitude by Dr. R. S Agarwal, published by S.Chand private limited.

Reference Book(s):
1. Quantitative Aptitude by Arun Sharma, McGraw Hill Education Pvt Ltd

Web and Video link(s):
1. NPTEL Course: Problem Solving through Programming in C, Prof. Anupam Basu, IIT Kharagpur
 https://nptel.ac.in/courses/106/105/106105171/

| COURSE ARTICULATION MATRIX [Employability Enhancement Skills (EES) - IV] |
|------------------|---|---|---|---|---|---|---|---|---|---|---|
| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO-1 | 2 | - | - | - | - | - | - | - | - | - | - | - |
| CO-2 | - | 2 | 1 | - | - | - | - | 3 | 1 | 2 | 2 | - |
| CO-3 | - | 1 | 2 | - | - | - | - | - | 2 | - | 1 | - |
INTERNSHIP - 1

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – IV

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>P21INT409</th>
<th>Credits:</th>
<th>01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P):</td>
<td>0 : 0 : 0</td>
<td>CIE Marks:</td>
<td>-</td>
</tr>
<tr>
<td>Internship duration</td>
<td>2 weeks</td>
<td>SEE Marks:</td>
<td>100</td>
</tr>
</tbody>
</table>

All the students registered to II year of BE shall have to undergo a mandatory internship of 02 weeks during the intervening vacation of II and III semesters or III and IV semester. Internship shall include Inter / Intra Institutional activities. A Semester End Examination (Presentation followed by question-answer session) shall be conducted during IV semester and the prescribed credit shall be included in IV semester. The internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take up / complete the internship shall be declared fail and shall have to complete during subsequent Semester End Examination after satisfying the internship requirements. (The faculty coordinator or mentor has to monitor the students’ internship progress and interact to guide them for the successful completion of the internship.)

List of Activities

1. Activities concerned with the works of Indian scholars like Charaka and Susruta, Aryabhata, Bhaskaracharya, Chanakya, Madhava, Patanjali, Panini and Thiruvalluvar, among numerous others. (Reference NEP 2020, page 04)
2. Activities such as training with higher Institutions or Soft skill training organized by Training and Placement Cell of the respective institutions.
3. Contribution at incubation/innovation/entrepreneurship cell of the institute.
4. Participation in conferences/workshops/competitions etc.
5. Learning at Departmental Lab/Tinkering Lab/Institutional workshop.
6. And working for consultancy/research project with-in the institute. [Serial numbers 2 to 6, AICTE Internship Policy.pdf page 8]
7. Learning MS Word, Excel, Microsoft equations, MS drawing tools, MS Power point, etc.
8. Coding.
10. Debates, quizzes, and group discussions: On technica
11. Essay competitions: Both in Kannada and English on technical topics already studied.
15. Short film production: Contemporary aspects, Technical aspects etc.
16. Music Competition (Vocal and Instrumental): Classical – Indian and western, Sugama- Sangeetha (Bhava Geethegalu), Folk songs, film songs etc.
17. Internship in Disaster Management. [AICTE APH 2021-22 pdf page166]
18. Solar energy connected activities that help common man. [AICTE APH 2021-22 pdf page166]
19. Working with Smart City Administration.
20. Hackathon (it is a design sprint-like event in which computer programmers and others involved in software development, including graphic designers, interface designers, project managers, and others, often including domain experts, collaborate intensively on software projects).
22. Internship and project work in Indian Knowledge System related Areas / Topics.
23. Industrial visits / small scale Industries / Factories / Cottage Industries / substation visit / short project tour, etc., and submission of report.

Documents to be submitted by Students for Internship Evaluation

I. Student’s Diary
The main purpose of writing a daily diary is to cultivate the habit of documenting and to encourage the students to search for details. It develops the students’ thought process and reasoning abilities. The students shall record in the daily training diary the day to day account of the observations, impressions, information gathered and suggestions given, if any, and activities carried out. It should contain the sketches and drawings related to the observations made by the students. The daily training diary should be signed after every day or at least twice a week by the Faculty/ in charge of the section (external expert) where the student has been working.

The student’s Diary should be submitted by the students along with attendance record. It shall be evaluated on the basis of the following criteria:

(i) Regularity in the maintenance of the diary.
(ii) Adequacy and quality of information recorded.
(iii) Drawings, sketches, and data recorded.
(iv) Thought process and recording techniques used.
(v) Organization of the information.

II. Internship Report
After completion of the Internship, the student shall prepare, with daily diary as a reference, a comprehensive report in consultation with the evaluators to indicate what he has observed and learned in the training period along with the internship outcomes. The training report should be signed by the Evaluator.

The Internship report shall be evaluated on the basis of the following criteria and/or other relevant criteria pertaining to the activity completed.

(i) Originality.
(ii) Adequacy and purposeful write-up.
(iii) Organization, format, drawings, sketches, style, language etc.
(iv) Variety and relevance of learning experience.

Practical applications relationships with basic theory and concepts taught in the course.
<table>
<thead>
<tr>
<th>Sl No</th>
<th>Sub Activity Head</th>
<th>Performance/ Appraisal</th>
<th>Assessment Rubrics (Allotted marks decide the letter grade)</th>
<th>Proposed Document as Evidence</th>
<th>Evaluated by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inter/Intra Institutional Workshop/ Training.</td>
<td>Excellent</td>
<td>80 to 100</td>
<td>(i) Student’s Diary and Internship Report along with the certificate issued from relevant authorized Authority</td>
<td>i) Institute Faculty together with External Expert if any. (ii) Training and Placement Officer. (iii) Physical Education Officer or the concerned in charge Officer of the Activity</td>
</tr>
<tr>
<td></td>
<td>Good</td>
<td>79 to 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Satisfactory</td>
<td>59 to 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unsatisfactory and fail</td>
<td><39</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BASIC ENGINEERING MATHEMATICS - II

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – IV (Lateral Entry: Common to all branches)

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>P21MDIP401</th>
<th>Credits:</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P):</td>
<td>2-2-0</td>
<td>CIE Marks:</td>
<td>100</td>
</tr>
<tr>
<td>Total Number of Teaching Hours:</td>
<td>40</td>
<td>SEE Marks:</td>
<td>-</td>
</tr>
</tbody>
</table>

Course objective: The mandatory learning course P21MDIP401 viz., BASIC ENGINEERING MATHEMATICS-II aims to provide essential concepts of linear algebra, introdutory concepts of second & higher order differential equations along with various techniques/ methods to solve them, Laplace & inverse Laplace transforms and elementary probability theory.

UNIT – I

Self-study component: Application of Cayley-Hamilton theorem (without proof) to compute the inverse of a matrix-Examples.

UNIT – II

Higher order ODE’s: Linear differential equations of second and higher order equations with constant coefficients. Homogeneous/non-homogeneous equations. Inverse differential operators. and variation of parameters. Solution of Cauchy’s homogeneous linear equation and Legendre’s linear differential equation.

Self-study component: Method of undetermined coefficients

UNIT – III

Multiple Integrals: Double and triple integrals-region of integration. Evaluation of double integrals by change of order of integration.

Vector Integration: Vector Integration: Integration of vector functions. Concept of a line integrals, surface and volume integrals. Green’s, Stokes’s and Gauss theorems (without proof) problems.

Self-study component: Orthogonal curvilinear coordinates.

UNIT – IV

Laplace transforms: Laplace transforms of elementary functions. Transforms of derivatives and integrals, transforms of periodic function and unit step function-Problems only. Inverse Laplace transforms: Definition of inverse Laplace transforms. Evaluation of Inverse transforms by standard methods.

Self-study component: Application to solutions of linear differential equations and simultaneous differential equations.

UNIT – V

Self-study component:
State and prove Bayes’s theorem.

Course Outcomes:
After the successful completion of the course, the students are able to

<table>
<thead>
<tr>
<th>CO1</th>
<th>Apply</th>
<th>matrix theory for solving systems of linear equations in the different areas of linear algebra.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Solve</td>
<td>second and higher order differential equations occurring in of electrical circuits, damped/un-damped vibrations.</td>
</tr>
<tr>
<td>CO3</td>
<td>Identify</td>
<td>the technique of integration to evaluate double and triple integrals by change of variables, and vector integration technique to compute line integral</td>
</tr>
<tr>
<td>CO4</td>
<td>Explore</td>
<td>the basic concepts of elementary probability theory and, apply the same to the problems of decision theory.</td>
</tr>
</tbody>
</table>

TEXT BOOKS

REFERENCE BOOKS

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Strength of correlation: Low-1, Medium-2, High-3
EMPLOYABILITY ENHANCEMENT SKILLS (EES) - II

As per Choice Based Credit System (CBCS) & OBE Scheme

SEMESTER – IV

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>P21HDIP408</th>
<th>Credits:</th>
<th>01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P):</td>
<td>0:2:0</td>
<td>CIE Marks:</td>
<td>100</td>
</tr>
<tr>
<td>Total Number of Teaching Hours:</td>
<td>28</td>
<td>SEE Marks:</td>
<td>-</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to:
- Get introduced to the concepts of teamwork and leadership
- Understand the importance of professional etiquettes
- Describe the reading with comprehension
- Explain the purpose, plan and ways to identify specific details in a paragraph for better comprehension
- Form grammatically correct sentences
- Explain the basic concepts in calculating simple interest and compound interest
- Explain concepts behind logical reasoning modules of direction sense, coding & decoding, series and visual reasoning

UNIT – I
10 Hours

Soft Skills: Etiquette, Presentation Skills, Introduction to Body Language, Interpersonal and Intrapersonal Skills, Team work, Leadership skills, Extempore

Self-Study: Concepts of Sympathy and Empathy

UNIT – II
10 Hours

Verbal Ability: Verbal Analogies, Sentence completion & correction, Reading comprehension

Self-Study: Paragraph sequencing

UNIT – III
8 Hours

Quantitative Aptitude: Simple & Compound Interest, Ratio & Proportion, Time & Work

Logical Reasoning: Direction Sense, Coding and Decoding, Series, Visual reasoning

Self-Study: Directions and Pythagoras Theorem, differences between mirror and water images
Course Outcomes: On completion of this course, students are able to:

CO – 1: Exhibit amplified level of confidence to express themselves in English
CO – 2: Critical awareness of the importance of teamwork and development of the skills for building effective teams
CO – 3: Solve the questions under reading comprehension confidently with higher accuracy
CO – 4: Solve the problems based on interest, ratio & proportion, time & work
CO – 5: Solve logical reasoning problems based on direction sense, coding & decoding and series

Text Book(s):
2. Essential English Grammar by Raymond Murphy, Cambridge University Press, new edition
3. The 7 habits of Highly Effective People by Stephen R. Covey
4. Quantitative aptitude by Dr. R. S Agarwal, published by S.Chand private limited.
5. Verbal reasoning by Dr. R. S Agarwal , published by S. Chand private limited.

Reference Book(s):
1. Quantitative Aptitude by Arun Sharma, McGraw Hill Education Pvt Ltd
2. CAT Mathematics by Abhijith Guha, PHI learning private limited.

Web and Video link(s):
1. Teamwork Skills: Communicating Effectively in Groups
 https://www.coursera.org/learn/teamwork-skills-effective-communication

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO-2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO-3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO-4</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO-5</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
BE – III / IV Semester – Common to all

Course Details

<table>
<thead>
<tr>
<th>Course Code</th>
<th>P21KSK307/407</th>
<th>Syllabus</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teachin Hours / Week (L:T:P)</th>
<th>0-2-0</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours (Credits)</td>
<td>1</td>
<td>01</td>
</tr>
</tbody>
</table>

Teaching Learning Process – General Instructions:

These are sample Strategies, which teacher can use to accelerate the attainment of the course outcomes.

1. **Strategies:**
 - **Objective:**
 - To impart knowledge in the field of... (details expanded in text)
 - **Methodology:**
 - Lecture method
 - Discussion
 - Practical demonstration

2. **Personal Strategies:**
 - **Objective:**
 - To enhance students' understanding...
 - **Methodology:**
 - Group discussions
 - Assignments
 - Case studies

3. **Assessment Strategies:**
 - **Objective:**
 - To evaluate students' comprehension...
 - **Methodology:**
 - Quizzes
 - Projects
 - Exams

P21 Scheme - III & IV Semester Syllabus
P.E.S. College of Engineering, Mandya
Department of Mechanical Engineering

P21 Scheme - III & IV Semester Syllabus

1. ವಿಜ್ಞಾನ ಮತ್ತು ಸಾರ್ವಜನಿಕ ವಿಮರ್ಷ

<table>
<thead>
<tr>
<th>ವಿಷಯ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ವಿಜ್ಞಾನ ಮತ್ತು ಸಾರ್ವಜನಿಕ ವಿಮರ್ಷ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
</tr>
</tbody>
</table>

2. ವಿಜ್ಞಾನ ಮತ್ತು ಸಾರ್ವಜನಿಕ ವಿಮರ್ಷ

<table>
<thead>
<tr>
<th>ವಿಷಯ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ವಿಜ್ಞಾನ ಮತ್ತು ಸಾರ್ವಜನಿಕ ವಿಮರ್ಷ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
</tr>
</tbody>
</table>

3. ವಿಜ್ಞಾನ ಮತ್ತು ಸಾರ್ವಜನಿಕ ವಿಮರ್ಷ

<table>
<thead>
<tr>
<th>ವಿಷಯ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ವಿಜ್ಞಾನ ಮತ್ತು ಸಾರ್ವಜನಿಕ ವಿಮರ್ಷ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
</tr>
</tbody>
</table>

4. ವಿಜ್ಞಾನ ಮತ್ತು ಸಾರ್ವಜನಿಕ ವಿಮರ್ಷ

<table>
<thead>
<tr>
<th>ವಿಷಯ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ವಿಜ್ಞಾನ ಮತ್ತು ಸಾರ್ವಜನಿಕ ವಿಮರ್ಷ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
</tr>
</tbody>
</table>

5. ವಿಜ್ಞಾನ ಮತ್ತು ಸಾರ್ವಜನಿಕ ವಿಮರ್ಷ

<table>
<thead>
<tr>
<th>ವಿಷಯ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ವಿಜ್ಞಾನ ಮತ್ತು ಸಾರ್ವಜನಿಕ ವಿಮರ್ಷ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
</tr>
</tbody>
</table>

6. ವಿಜ್ಞಾನ ಮತ್ತು ಸಾರ್ವಜನಿಕ ವಿಮರ್ಷ

<table>
<thead>
<tr>
<th>ವಿಷಯ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
<th>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ವಿಜ್ಞಾನ ಮತ್ತು ಸಾರ್ವಜನಿಕ ವಿಮರ್ಷ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
<td>ಪ್ರಮುಖ ಪರಿಗಣನೆಸಿಗಾರ</td>
</tr>
</tbody>
</table>

P21 Scheme - III & IV Semester Syllabus Page 61
(Course Outcomes)

1. Possess the basic knowledge and skills in the area of Engineering Science.
2. Possess the ability to analyze problems and propose solutions.
3. Possess the ability to work in teams.
4. Possess the ability to develop and apply advanced engineering technologies.

(Assessment Details – both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The student has to obtain a minimum of 40% marks individually both in CIE and 35% marks in SEE to pass. Theory Semester End Exam (SEE) is conducted for 50 marks (01 hour duration). Based on this grading will be awarded.

Continuous Internal Evaluation:
Two Tests each of 40 Marks (duration 01 hour)
Two assignments each of 10 Marks

CIE methods / question paper is designed to attain the different levels of Blomm’s taxonomy as per the outcome defined for the course.

Semester end Exam
SEE will be conducted as per the scheduled timetable, with common question papers for the subject,

1. The question paper will have 25 questions. Each question is set for 02 marks.

2. SEE Pattern will be in MCQ Model for 50 marks. Duration of the exam is 01 hour.
BE – III / IV Semester – Common to all

<table>
<thead>
<tr>
<th>Course Code (Course Code)</th>
<th>P21KBK307/407</th>
<th>Teaching Hours/Week (L:T:P)</th>
<th>0-2-0</th>
<th>50</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Credits (Credits)</th>
<th>25 Teaching Hours</th>
<th>100</th>
</tr>
</thead>
</table>

Balake Kannada (Kannada for Usage)

(Prescribed Textbook to Learn Kannada)

<table>
<thead>
<tr>
<th>Textbook to Learn Kannada</th>
<th>P21KBK307/407</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balake Kannada (Kannada for Usage)</td>
<td></td>
</tr>
<tr>
<td>Prescribed Textbook to Learn Kannada</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>P21KBK307/407</td>
</tr>
<tr>
<td>Credits</td>
<td>1</td>
</tr>
</tbody>
</table>

Course Learning Objectives:

- To create the awareness regarding the necessity of learning local language for comfortable and healthy life.
- To enable learners to Listen and understand the Kannada language properly.
- To speak, read and write Kannada language as per requirement.
- To rain the learners for correct and polite conservation.

Teaching-Learning Process – General Instructions:

These are sample Strategies, which teacher can use to accelerate the attainment of the course outcomes.

1. **Module - 1**

1. Introduction, Necessity of learning a local language. Methods to learn the Kannada language.
2. Easy learning of a Kannada Language: A few tips. Hints for correct and polite conservation, Listening and Speaking Activities.
3. Key to Transcription.
4. **Module - 2**

<table>
<thead>
<tr>
<th>Personal Pronouns, Possessive Forms, Interrogative words</th>
<th></th>
</tr>
</thead>
</table>
Module - 2

1. **Possessive forms of nouns, dubitive question and Relative nouns**
2. **Qualitative and Colour Adjectives, Numerals**
3. **Predictive Forms, Locative Case**

<table>
<thead>
<tr>
<th>Module</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1. Possessive forms of nouns, dubitive question and Relative nouns</td>
</tr>
<tr>
<td></td>
<td>2. Qualitative and Colour Adjectives, Numerals</td>
</tr>
<tr>
<td></td>
<td>3. Predictive Forms, Locative Case</td>
</tr>
</tbody>
</table>

Module - 3

1. **Dative Cases, and Numerals**
2. **Ordinal numerals and Plural markers**
3. **Defective / Negative Verbs and Colour Adjectives**

<table>
<thead>
<tr>
<th>Module</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1. Dative Cases, and Numerals</td>
</tr>
<tr>
<td></td>
<td>2. Ordinal numerals and Plural markers</td>
</tr>
<tr>
<td></td>
<td>3. Defective / Negative Verbs and Colour Adjectives</td>
</tr>
</tbody>
</table>

Module - 4

1. **Permission, Commands, encouraging and Urging words (Imperative words and sentences)**
2. **Accusative Cases and Potential Forms used in General Communication**
3. **Helping Verbs “iru and iralla”, Corresponding Future and Negation Verbs**
4. **Comparative, Relationship, Identification and Negation Words**

<table>
<thead>
<tr>
<th>Module</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1. Permission, Commands, encouraging and Urging words (Imperative words and sentences)</td>
</tr>
<tr>
<td></td>
<td>2. Accusative Cases and Potential Forms used in General Communication</td>
</tr>
<tr>
<td></td>
<td>3. Helping Verbs “iru and iralla”, Corresponding Future and Negation Verbs</td>
</tr>
<tr>
<td></td>
<td>4. Comparative, Relationship, Identification and Negation Words</td>
</tr>
</tbody>
</table>

Module - 5

1. **Differnt types of forms of Tense, Time and Verbs**
2. **Formation of past, Future and Present Tense Sentences with Verb Forms**
3. **Kannada Vocabulary List : Kannada Words in Conversation**

<table>
<thead>
<tr>
<th>Module</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1. Differnt types of forms of Tense, Time and Verbs</td>
</tr>
<tr>
<td></td>
<td>2. Formation of past, Future and Present Tense Sentences with Verb Forms</td>
</tr>
<tr>
<td></td>
<td>3. Kannada Vocabulary List : Kannada Words in Conversation</td>
</tr>
</tbody>
</table>
Course Outcomes (Course Skill Set): At the end of the course, the students will be able
1. To understand the necessity of learning of local language for comfortable life.
2. To listen and understand the Kannada language properly.
3. To speak, read and write Kannada language as per requirement.
4. To communicate (converse) in Kannada language in their daily life with Kannada speakers.
5. To speak in polite conversation.

(Assessment Details – both CIE and SEE)
The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures not less than 35% (18 marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:
Two Tests each of 40 Marks (duration 01 hour)
Two assignments each of 10 Marks

CIE methods/question paper is designed to attain the different levels of Bloom’s taxonomy as per the outcome defined for the course.

Semester end Exam (SEE)
SEE will be conducted as per the scheduled timetable, with common question papers for the subject,
1. The question paper will have 25 questions. Each question is set for 02 marks.
2. SEE Pattern will be in MCQ Model for 50 marks. Duration of the exam is 01 hour.

Text book:

P21 Scheme - III & IV Semester Syllabus
Constitution of India and Professional Ethics (CIP)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>P21CIP307/407</th>
<th>CIE Marks</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachin Hours / Week (L:T:P)</td>
<td>0-2-0</td>
<td>SEE Marks</td>
<td>50</td>
</tr>
<tr>
<td>Total Hours of Pedagogy</td>
<td>25 Hours</td>
<td>Total Marks</td>
<td>100</td>
</tr>
<tr>
<td>Credits</td>
<td>1</td>
<td>Exam Hours</td>
<td>01 Hour</td>
</tr>
</tbody>
</table>

Course Objectives: This course will enable the students

a. To know the fundamental political structure & codes, procedures, powers, and duties of Indian government institutions, fundamental rights, directive principles, and the duties of citizens.

b. To understand engineering ethics and their responsibilities, identify their individual roles and ethical responsibilities towards society.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- Teachers shall adopt suitable pedagogy for effective teaching - learning process. The pedagogy shall involve the combination of different methodologies which suit modern technological tools and software’s to meet the present requirements of the Global employment market.

 - (i) Direct instructional method (Low /Old Technology),
 - (ii) Flipped classrooms (High/advanced Technological tools),
 - (iii) Blended learning (combination of both),
 - (iv) Enquiry and evaluation based learning,
 - (v) Personalized learning,
 - (vi) Problems based learning through discussion,
 - (vii) Following the method of expeditionary learning Tools and techniques,

1. Apart from conventional lecture methods, various types of innovative teaching techniques through videos, animation films may be adapted so that the delivered lesson can enhance the students in theoretical applied and practical skills in teaching of 21CIP39/49 in general.

Module - 1

Introduction to Indian Constitution: Definition of Constitution, Necessity of the Constitution, Societies before and after the Constitution adoption. Introduction to the Indian constitution, Making of the Constitution, Role of the Constituent Assembly. Preamble of Indian Constitution & Key concepts of the Preamble. Salient features of India Constitution.

<table>
<thead>
<tr>
<th>Teaching-Learning Process</th>
<th>Chalk and talk method, Videos, Power Point presentation to teach. Creating real time stations in classroom discussions, Giving activities and assignments (Connecting Campus & community with administration real time situations).</th>
</tr>
</thead>
</table>

P21 Scheme - III & IV Semester Syllabus
Module - 2

Fundamental Rights (FR’s), Directive Principles of State Policy (DPSP’s) and Fundamental Duties (FD’s): Fundamental Rights and its Restriction and limitations in different Complex Situations. DPSP’s and its present relevance in Indian society. Fundamental Duties and its Scope and significance in Nation building.

| Teaching-Learning Process | Chalk and talk method, Videos, Power Point presentation to teach. Creating real time stations in classroom discussions, Giving activities and assignments (Connecting Campus & community with administration real time situations). |

Module - 3

Union Executive: Parliamentary System, Union Executive – President, Prime Minister, Union Cabinet, Parliament - LS and RS, Parliamentary Committees, Important Parliamentary Terminologies. Supreme Court of India, Judicial Reviews and Judicial Activism.

| Teaching-Learning Process | Chalk and talk method, Videos, Power Point presentation to teach. Creating real time stations in classroom discussions, Giving activities and assignments (Connecting Campus & community with administration real time situations). |

Module - 4

| Teaching-Learning Process | Chalk and talk method, Videos, Power Point presentation to teach. Creating real time stations in classroom discussions, Giving activities and assignments (Connecting Campus & community with administration real time situations). |

Module - 5

| Teaching-Learning Process | Chalk and talk method, Videos, Power Point presentation to teach. Creating real time stations in classroom discussions, Giving activities and assignments (Connecting Campus & community with administration real time situations). |
Course outcome (Course Skill Set)
At the end of the course the student should:
- CO 1: Have constitutional knowledge and legal literacy.
- CO 2: Understand Engineering and Professional ethics and responsibilities of Engineers.

Assessment Details (both CIE and SEE)
The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks that is 20 marks. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE and SEE taken together.

Continuous Internal Evaluation:
- Two Tests each of **40 Marks (duration 01 hour)**
- Two assignments each of **10 Marks**

The average of two tests, two assignments, and quiz/seminar/group discussion will be out of 50 marks.

CIE methods/question paper is designed to attain the different levels of Bloom’s taxonomy as per the outcome defined for the course.

Semester End Examination:
SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject.
- The question paper will have 25 questions. Each question is set for 02 marks.
- SEE Pattern will be in MCQ Model (Multiple Choice Questions) for 50 marks. Duration of the examination is 01 Hour.

Textbook:
1. **“Constitution of India & Professional Ethics”** Published by Prasaranga or published on VTU website with the consent of the university authorities VTU Belagavi.