SYLLABUS FOR B.E. VII & VIII SEMESTER
(With effect from 2017-18 Academic year)

ಎಂಜಿನಿಯರಿಂಗ್
(ಮುಂದುವರಿಸಲಿದೆ 2017–18)

BACHELOR DEGREE
IN
COMPUTER SCIENCE & ENGINEERING
OUT COME BASED EDUCATION
WITH
CHOICE BASED CREDIT SYSTEM

P.E.S. COLLEGE OF ENGINEERING,
MANDYA - 571 401, KARNATAKA
(An Autonomous Institution Affiliated to VTU, Belagavi,
Grant -in- Aid Institution (Government of Karnataka), World Bank Funded College (TEQIP)
Accredited by NBA, New Delhi and Approved by AICTE, New Delhi.)

埠.ಎಸ್.ಸಿ. ಕೋಲೇಜ್ ಆಫ್ ಇಂಗಿನೀಯರಿಂಗ್
ಮಂಡೈ–571 401, ಕರ್ನಾಟಕ
(ಪ್ರಸ್ಥನೆ, ಪ್ರಸ್ಥನೆ ಅತ್ಯಂತಲ್ಲಿ ಸ್ವಿತ್ರು ಸ್ವಿತ್ರು)
Ph : 08232- 220043, Fax : 08232 – 222075,Web : www.pescemandya.org
PREFACE

P.E.S. College of Engineering, Mandya, started in the year 1962, has become autonomous in the academic year 2008-09. Since, then it has been doing the academic and examination activities successfully. The college is running Eight Undergraduate and Six Postgraduate programs. It consists of four M.Tech programs, which are affiliated to VTU. Other postgraduate programs are MBA and MCA.

India has become a Permanent Member by signing the Washington Accord. The accord was signed by the National Board of Accreditation (NBA) on behalf of India on 13th June 2014. It enables not only the mobility of our degree globally but also establishes equivalence to our degrees with that of the member nations such as Taiwan, Hong Kong, Ireland, Korea, Malaysia, New Zealand, Russia, Singapore, South Africa, Turkey, Australia, Canada and Japan. Among other signatories to the international agreement are the US and the UK. Implementation of Outcome Based Education (OBE) has been the core issue for enabling the equivalence and of Indian degrees and their mobility across the countries.

Our Higher Educational Institution has adopted the CBCS based semester structure with OBE scheme and grading system.

The credit based OBE semester system provides flexibility in designing curriculum and assigning credits based on the course content and hours of teaching.

The OBE, emphasize setting clear standards for observable, measurable outcomes of programs in stages. There lies a shift in thinking, teaching and learning processes moving towards Students Centric from Teacher Centric education. OBE standards focus on mathematics, language, science, attitudes, social skills & moral values.

The key features which may be used to judge, if a system has implemented an outcome based education system is mainly Standard based assessments that determines whether students have achieved the stated standard. Assessments may take any form, so long as the process actually measure whether the student knows the required information or can perform the required task. Outcome based education is a commitment that all students of all groups will ultimately reach the same minimum standards. Outcome Based Education is a method or means which begins with the end in mind and constantly emphases continuous improvement.

Choice Based Credit System (CBCS) provides choice for students to select from the prescribed courses (core, Foundation, Foundation Elective, elective, open elective and minor or soft skill courses). The CBCS provides a ‘cafeteria’ type approach in which the students can Choose electives from a wide range of courses of their choice, learn at their own pace, undergo additional courses and acquire more than the required credits, adopt an interdisciplinary approach to learning which enables integration of concepts, theories, techniques, and, perspectives from two or more disciplines to advance fundamental understanding or to solve problems whose solutions are beyond the scope of a single discipline. These greatly enhance the skill/employability of students.

In order to increase the Industry/Corporate readiness, many Soft Skills, Personality Development modules and Technical Skills have been added to the existing curriculum of the academic year 2018-19. Internship have been made compulsory to enhance the field experience. In order to enhance creativity and innovation Technical Skills and Skill Oriented Lab are included in all undergraduate programs.

Dr.Umesh D.R.
Deputy Dean (Academic)
Associate Professor,
Dept. of Computer Science &Engg.

Dr.Nagarathna
Dean (Academic)
Professor,
Dept. of Computer Science &Engg.
P.E.S. College of Engineering, Mandya

VISION

“PESCE shall be a leading institution imparting quality Engineering and Management education developing creative and socially responsible professionals

MISSION

• Provide state of the art infrastructure, motivate the faculty to be proficient in their field of specialization and adopt best teaching-learning practices.
• Impart engineering and managerial skills through competent and committed faculty using outcome based educational curriculum.
• Inculcate professional ethics, leadership qualities and entrepreneurial skills to meet the societal needs.
• Promote research, product development and industry-institution interaction.

Department of Computer Science and Engineering

The Vision of the department is:
“The Department of Computer Science and Engineering shall create professionally competent and socially responsible engineers capable of working in global environment.”

The mission of the department is:
DM1: Enforce best practices in teaching-learning, with dedicated faculty and supportive infrastructure to impart the knowledge in emerging technologies.
{Required to create professionally competent engineers}
DM2: Improve Industry-Institute relationship for mutual benefit.
{Required to create professionally competent engineers}
DM3: Inculcate ethical values, communication and entrepreneurial skills.
{Required to create professionally competent and socially responsible engineers}
DM4: Sensitize social, legal, environmental and cultural diversity issues through professional training and balanced curriculum.
{Required to create engineers capable of working in global environment}

Program Educational Objectives (PEOs)

Graduates of the program shall
1. Have Successful computer professional career in IT industry and related areas.
2. Pursue higher education in engineering or management with the focus on intensive research and developmental activities.
3. Develop computing systems in a responsible, professional and ethical manner to serve the society.

The National Board of Accreditation (NBA) has defined twelve Program Outcomes for Under Graduate (UG) engineering programs as listed below.
Program Outcomes (POs)

1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization for the solution of complex engineering problem.

2. **Problem analysis**: Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.

3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.

6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess Societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

The Under Graduate (UG) of B.E Computer Science & Engineering Program has defined **Program Specific Outcomes (PSO)** which are listed below.

The students shall have the

1. Ability to design and develop network based systems in emerging technology environments like Cloud Computing, Security, Internet of Things and embedded systems.

2. Ability to develop knowledge based data management system in the areas like data analytics, data mining, business intelligence, pattern recognition and knowledge discovery in solving engineering problems.
VII Semester B.E. (CS & E)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Dept.</th>
<th>Hours Pattern L:T:P:H</th>
<th>Total Credit</th>
<th>Examination Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>P17CS71</td>
<td>Machine Learning</td>
<td>CS</td>
<td>4:0:0:4</td>
<td>4</td>
<td>50 50 100</td>
</tr>
<tr>
<td>2.</td>
<td>P17CS72</td>
<td>Multi-core architecture & Parallel Programming</td>
<td>CS</td>
<td>4:0:0:4</td>
<td>4</td>
<td>50 50 100</td>
</tr>
<tr>
<td>3.</td>
<td>P17CS73</td>
<td>Managing Big Data</td>
<td>CS</td>
<td>4:0:0:4</td>
<td>4</td>
<td>50 50 100</td>
</tr>
<tr>
<td>4.</td>
<td>P17CS74X</td>
<td>Elective-IV</td>
<td>CS</td>
<td>4:0:0:4</td>
<td>4</td>
<td>50 50 100</td>
</tr>
<tr>
<td>5.</td>
<td>P17CSO75X</td>
<td>Open Elective -I</td>
<td>CS</td>
<td>4:0:0:4</td>
<td>3</td>
<td>50 50 100</td>
</tr>
<tr>
<td>6.</td>
<td>P17CSL76</td>
<td>Parallel Programming Laboratory</td>
<td>CS</td>
<td>0:0:3:3</td>
<td>1.5</td>
<td>50 50 100</td>
</tr>
<tr>
<td>7.</td>
<td>P17CSL77</td>
<td>Machine Learning Laboratory</td>
<td>CS</td>
<td>0:0:3:3</td>
<td>1.5</td>
<td>50 50 100</td>
</tr>
<tr>
<td>8.</td>
<td>P17CS78</td>
<td>Project Work Phase -I</td>
<td>CS</td>
<td>0:0:4:2</td>
<td>2</td>
<td>50 50 100</td>
</tr>
</tbody>
</table>

Total: 23 350 400 750

List of Electives

Elective-IV

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Course code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P17CS741</td>
<td>Cyber Security</td>
</tr>
<tr>
<td>2</td>
<td>P17CS742</td>
<td>Block Chain Technology</td>
</tr>
<tr>
<td>3</td>
<td>P17CS743</td>
<td>Wireless Sensor Networks</td>
</tr>
<tr>
<td>4</td>
<td>P17CS744</td>
<td>Object Oriented Modeling & Design with UML</td>
</tr>
</tbody>
</table>

Elective-VI

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Course code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P17CS821</td>
<td>Mobile Computing</td>
</tr>
<tr>
<td>2</td>
<td>P17CS822</td>
<td>Computer Vision</td>
</tr>
<tr>
<td>3</td>
<td>P17CS823</td>
<td>Software Testing</td>
</tr>
<tr>
<td>4</td>
<td>P17CS824</td>
<td>Web Security</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Course code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P17CS741</td>
<td>Cyber Security</td>
</tr>
<tr>
<td>2</td>
<td>P17CS742</td>
<td>Block Chain Technology</td>
</tr>
<tr>
<td>3</td>
<td>P17CS743</td>
<td>Wireless Sensor Networks</td>
</tr>
<tr>
<td>4</td>
<td>P17CS744</td>
<td>Object Oriented Modeling & Design with UML</td>
</tr>
</tbody>
</table>

VIII Semester B.E. (CS & E)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Dept.</th>
<th>Hours Pattern L:T:P:H</th>
<th>Total Credit</th>
<th>Examination Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>P17CS81</td>
<td>Cryptography & Network Security</td>
<td>CS</td>
<td>4:0:0:4</td>
<td>3</td>
<td>50 50 100</td>
</tr>
<tr>
<td>2.</td>
<td>P17CS82X</td>
<td>Elective-V</td>
<td>CS</td>
<td>4:0:0:4</td>
<td>3</td>
<td>50 50 100</td>
</tr>
<tr>
<td>3.</td>
<td>P17CS83X</td>
<td>Elective-VI</td>
<td>CS</td>
<td>4:0:0:4</td>
<td>3</td>
<td>50 50 100</td>
</tr>
<tr>
<td>4.</td>
<td>P17CSO84X</td>
<td>Open Elective-II</td>
<td>CS</td>
<td>4:0:0:4</td>
<td>3</td>
<td>50 50 100</td>
</tr>
<tr>
<td>5.</td>
<td>P17CS85</td>
<td>Project Work Phase-II</td>
<td>CS</td>
<td>0:0:16:16</td>
<td>8</td>
<td>50 100 150</td>
</tr>
<tr>
<td>6.</td>
<td>P17CS86</td>
<td>Internship</td>
<td>CS</td>
<td>---</td>
<td>2</td>
<td>50 50 100</td>
</tr>
</tbody>
</table>

Total: 22 300 350 650

List of Electives

Elective-V

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P17CS821</td>
<td>Mobile Computing</td>
</tr>
<tr>
<td>2</td>
<td>P17CS822</td>
<td>Computer Vision</td>
</tr>
<tr>
<td>3</td>
<td>P17CS823</td>
<td>Software Testing</td>
</tr>
<tr>
<td>4</td>
<td>P17CS824</td>
<td>Web Security</td>
</tr>
</tbody>
</table>

Elective-VI

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P17CS831</td>
<td>Network Management Systems</td>
</tr>
<tr>
<td>2</td>
<td>P17CS832</td>
<td>Software Project Management</td>
</tr>
<tr>
<td>3</td>
<td>P17CS833</td>
<td>Agile Technologies</td>
</tr>
<tr>
<td>4</td>
<td>P17CS834</td>
<td>Business Intelligence & Applications</td>
</tr>
</tbody>
</table>

Open Elective-II

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P17CSO841</td>
<td>Data Base Systems</td>
</tr>
<tr>
<td>2</td>
<td>P17CSO842</td>
<td>Mobile Application Development</td>
</tr>
<tr>
<td>3</td>
<td>P17CSO843</td>
<td>Unix and Shell Programming</td>
</tr>
<tr>
<td>4</td>
<td>P17CSO844</td>
<td>Python Programming</td>
</tr>
</tbody>
</table>
Course Title: Machine Learning

Course Code: P17CS71 | **Semester:** 7 | **L:T:P:H:** 4 : 0 : 0 : 4 | **Credits:** 4

Contact Period: Lecture: 52 Hr, Exam: 3 Hr | **Weightage:** CIE: 50% SEE: 50%

Course Content

Unit-1

K-Nearest Neighbour: What is a Neighbourhood, K-Nearest Neighbours, Mr. K’s Nearest Neighborhood’, Distances, Triangle Inequality, Geometrical Distance, Computational Distances, Statistical Distances, Curse of Dimensionality, How Do We Pick K, Guessing K, Heuristics for Picking K, About the Data, General Strategy, Mathematical Notation Used Throughout the Book, Coding and Testing Design.

Self study Component: KNN Regressor Construction, KNN Testing.

10 Hours

Unit-2

Naive Bayesian Classification: Using Bayes’ Theorem to Find Fraudulent Orders, Conditional Probabilities, Probability, Inverse Conditional Probability (aka Bayes Theorem) Naive Bayesian Classifier, The Chain Rule, Naiveté in Bayesian Reasoning, Pseudocount, Spam Filter, Setup Notes, Coding and Testing Design, Data Source, Email class, Tokenization and Context.

Self Study Component: Spam Trainer, Error Minimization through Cross- Validation.

10 Hours

Unit-3

Self Study Component: The Decoding Problem Through the Viterbi Algorithm, The Learning Problem.

11 Hours

Unit-4

Support Vector Machines: Customer Happiness as a Function of What They Say, Sentiment Classification Using SVMs, The Theory Behind SVMs Decision Boundary, Maximizing Boundaries, Kernel Trick: Feature Transformation, Optimizing with Slack, Sentiment Analyzer, Setup Notes Coding and Testing Design, SVM Testing Strategies.

Self Study Component: Sentiment Classifier.

10 Hours

Unit-5

Neural Networks: What is a Neural Network, History of Neural Nets, Boolean Logic Perceptrons, How to Construct Feed-Forward Neural Nets, Input Layer Hidden Layers Neurons Activation-Functions, Output-Layer, Training-Algorithms, The Delta Rule, Back-Propagation, Quick Prop, R-Prop, Building Neural Networks How Many Hidden Layers, How Many Neurons for Each Layer, Tolerance for Error and Max Epochs Using a Neural Network to Classify a Language.

Self Study Component: Using a Neural Network to Classify a Language.

11 Hours
Course Outcomes:
1. Students Can Understand the Basics & algorithms of Machine Learning
2. Students Can do Classification using thermos
3. Students Can Observe the Principals & hidden layers
4. Students Can test and implement Applications
5. Student Can Construct & classify Neural networks.

Textbook:
1. Thoughtful Machine Learning with Python A Test-Driven Approach. By Matthew Kirk, Published by O’Reilly Media, Inc. 2017

Reference Books:

CO-PO Mapping

<table>
<thead>
<tr>
<th>Semester : 7</th>
<th>Course code : P17CS71</th>
<th>Title : Machine Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Statement</td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>Understand the Basics</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>Classification using thermos</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Observe the Principals & hidden layers</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Can test and implement Applications</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>Construct Neural Networks</td>
<td>2</td>
</tr>
</tbody>
</table>
Course Title: Multi-Core Architecture & Parallel Programming

Course Code: P17CS72 Semester: 7 L:T:P:H : 4:0:0:4 Credits: 4

Contact Period: Lecture: 52 Hrs, Exam: 3 Hrs Weightage: CIE:50%, SEE:50%

Prerequisites: Knowledge of Computer Architecture.

Course Content

Unit-1
Self Study Component: Virtual Environment: VMs and Platforms, Runtime Virtualization, System Virtualization.

11 Hours

Unit-2

11 Hours

Unit-3
Threading APIs: Threading APIs for Microsoft Windows, Win32/MFC Thread APIs, Threading APIs for Microsoft. NET Framework, Creating Threads, Managing Threads, Thread Pools, Thread Synchronization, POSIX Threads, Creating Threads, Managing Threads, Compilation and Linking.
Self Study Component: Thread Synchronization, Signaling.

10 Hours

Unit-4
Self Study Component: OpenMP Library Functions, OpenMP Environment Variables.

10 Hours
Unit-5

10 Hours

Text Books:
2. Introduction to Parallel Computing (2nd Edition) by Ananth Grama, George Karypis, Vipin Kumar and Anshul Gupta

Reference Books:
3. Michael J. Quin “Parallel Programming in C with MPI and Open MP”, McGraw Hill, 2004

Course outcomes: The students shall able to:
1. **Analyze** the salient features of different multicore architectures.
2. **Define** fundamental concepts of parallel programming and its design issues
3. **Compare** the different threading API’S.
4. **Demonstrate** the role of OpenMP and programming concept.
5. **Demonstrate** MPI programs.

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO’S</th>
<th>Statement</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Analyze the salient features of different multi-core architectures</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>Define fundamental concepts of parallel programming and its design issues</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>Compare the different threading API’S</td>
<td>3</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>Demonstrate the role of OpenMP and programming concept</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Demonstrate MPI programs</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

2.4 | 2.2 | 2.5 | 2 | 1 | 2 | 1.3 |
Course Title: Managing Big Data

Course Code: P17CS73 Semester : 7 L:T:P: H - 4 : 0 : 0 : 4 Credits: 4
Contact Period : Lecture :52 Hr, Exam: 3Hr Weightage :CIE:50% SEE:50%

Course Content

Unit-1
Self Study Component: Use of big data in Retail Industry.

10 Hours

Unit-2
Self Study Component: Zoo Keeper, OoZie, Role of HBase in Big Data Processing.

11 Hours

Unit-3
Understanding Hadoop YARN Architecture: Background, Advantages, Architecture and working of YARN, YARN schedulers, backward compatibility with YARN. NoSQL Data Management: Introduction to NoSQL, Characteristics of NoSQL, types of NoSQL data models, Schema-Less Databases, Materialized Views, Distribution Models, Sharding.
Self Study Component: YARN configuration, commands, containers.

10 Hours

Unit-4
Self Study Component: Flume and Sqoop.

10 Hours

Unit-5
Self Study Component: Merging datasets in R, Sorting data

11 Hours

Text Book:
Reference Books:
2. Big Data Analytics with R and Hadoop, Vignesh Prajapati, -Packt Publishing 2013

Course Outcome:
1. Overview of Big Data and Related Technologies
2. Analyze Technologies for Handling Big Data and Hadoop Ecosystem
3. Acquire clear understanding of Hadoop YARN and NoSQL Data Management
4. Acquire a clear understanding of Analytics and Big Data
5. Explore R Tool to Analyze Data

CO-PO Mapping

<table>
<thead>
<tr>
<th>Course Outcomes (CO’s)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO -1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO 2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO -3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO-4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO-5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Course Title: Cyber Security

Course Code: P17CS741 **Semester:** 7 **L:T:P:** H - 4 : 0 : 0 : 4 **Credits:** 3 **Contact Period:** Lecture: 52 Hr, Exam: 3 Hr **Weightage:** CIE: 50% SEE: 50%

Prerequisites: Computer Networks.

Course Content

Unit-1

INTRODUCTION TO CYBERCRIME: Introduction, Cybercrime definition and origins of the word, Cybercrime and information security, who are Cybercriminals, Classifications of cybercrimes, Cybercrime: The legal perspectives, Cybercrimes: An Indian perspective, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.

CYBEROFFENSES: HOW CRIMINALS PLAN THEM: Introduction, How criminal plan the attacks, Cybercafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Attack vector, Cloud computing.

Self Study Component: Social Engineering, Cyber stalking.

10 Hours

Unit-2

TOOLS AND METHODS USED IN CYBERCRIME: Introduction, Phishing, Password Cracking, Key loggers and Spywares, Virus and Worms, Trojan Horses and Backdoors, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks.

Self Study Component: Proxy Servers and Anonymizers.

11 Hours

Unit-3

PHISHING AND IDENTITY THEFT: Introduction, Phishing, Identity Theft (ID Theft)

CYBERCRIMES AND CYBERSECURITY: THE LEGAL PERSPECTIVES: Introduction, Why do we need Cyber law: The Indian Context, Digital Signature and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment, Cyber law, Technology and Students: Indian Scenario.

Self Study Component: The Indian IT Act, Challenges to Indian Law and cybercrime scenario in India.

10 Hours

Unit-4

UNDERSTANDING COMPUTER FORENSICS: Historical Background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Forensics Analysis of Email, Digital Forensics Lifecycle, Chain of Custody Concept, Network Forensics, Approaching a Computer Forensics Investigation, Setting of a Computer Forensics Laboratory: Understanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Layer Model to the Computer
Forensics and Social Networking Sites: The Security/Privacy Threats, Forensics Auditing, Anti-Forensics.

Self Study Component: Cyber forensics and Digital Evidence.

10 Hours

Unit-5

FORENSICS OF HAND HELD DEVICES: Introduction, Understanding cell phone working characteristics. Hand-held devices and digital forensics, Techno legal challenges with evidence from handheld devices, Organizational guidelines on cell phone forensics.

Self Study Component: Toolkits for handheld device forensics, forensics of iPods and digital music devices.

11 Hours

Text Book:

Reference Books:

Course Outcomes:
1. Describe cybercrime, legal perspectives and Identify different types of cyber-attacks.
2. Analyze security challenges presented by mobile devices and information systems access in the cybercrime world and Use tools and methods used in cybercrime.
3. Demonstrate phishing, identity theft and illustrate the challenges faced in punishing the cybercriminals.
4. Summarize the fundamental concepts in cyber forensics.
5. Implement tools used for the forensics of hand-held devices and Develop data

| Course Articulation Matrix(CAM) |
|-------------------------------|-------------------------------|-----------------|
| Course Outcomes (CO’s) | Program Outcomes(PO’s) | PSO’s |
| | 1 2 3 4 5 6 7 8 9 10 11 12 | 1 2 |
| CO – 1 | 3 1 2 | 1 1 |
| CO – 2 | 1 2 2 1 | 1 1 |
| CO – 3 | 2 2 2 1 | 1 1 |
| CO – 4 | 2 2 1 3 | 1 1 |
| CO – 5 | 2 2 2 1 | 1 1 |

VII & VIII Semester Syllabus 2017-2018
Course Title: Block Chain Technology

Course Code: P17CS742 **Semester:** 7 **L:T:P:** H - 4 : 0 : 4 **Credits:** 3

| Contact Period | Lecture :52 Hr, Exam: 3Hr | Weightage :CIE:50% SEE:50% |

Prerequisite:
Expertise In Programming, Basic Knowledge Of Computer Security, Cryptography, Networking, Concurrent Or Parallel Programming.

Course Learning Objectives:

1. Be Able to explain what is blockchain
2. Be able to explain why we need blockchain? What is the real world problems that blockchain is trying to solve?
3. Understand and describe how blockchain works
4. Explain the underlying technology of transactions, blocks, proof-of-work, and consensus building
5. How does blockchain exist in the public domain (decentralized, distributed) yet maintain transparency, privacy, anonymity, security, immutability, history
6. How is blockchain incentivized without any central controlling or trusted agency
7. How bitcoin crypto currency works
8. Why people value a ‘digital’ currency, how it can be protected against scam, fraud, hacking and devaluation
9. Design and implement new ways of using blockchain for applications other than crypto currency
10. Explore platforms such as Ethereum to build applications on blockchain

Course Content

Unit 1

Introduction to Block chain: Backstory of Block chain, what is Block chain? Centralized vs. Decentralized Systems, Layers of Block chain, why is Blockchain Important? Limitations of Centralized Systems, Blockchain Adoption So Far, Blockchain Uses and Use Cases

How Blockchain Works-1: Laying the Blockchain Foundation, Cryptography, Symmetric Key Cryptography, Cryptographic Hash Functions.

Self Study: MAC and HMAC **10 Hours**

Unit 2

How Blockchain Works-2: Asymmetric Key Cryptography, Diffie-Hellman Key Exchange, Symmetric vs. Asymmetric Key Cryptography, Nash Equilibrium, Prisoner’s Dilemma, Byzantine Generals’ Problem, Zero-Sum Games, Why to Study Game Theory, Computer Science Engineering, The Blockchain, Merkle Trees, Putting It All Together, Properties of Blockchain Solutions, Blockchain Transactions, Distributed Consensus Mechanisms, Blockchain Applications, Scaling Blockchain, Off-Chain Computation, Sharding Blockchain State

Self Study: Game Theory **10 Hours**
Unit-3

Self Study: Putting it All Together

Unit-4

Self Study: Ethereum Ecosystem

Unit 5

Self Study: Public Nodes vs. Self-Hosted Nodes, Decentralized Applications and Servers

12 Hours

Text Book:

Reference Books:

3. https://www.coursera.org/specializations/introduction-to-blockchain
4. https://nptel.ac.in/courses/106/104/106104220/

Course Outcome’s

1. Understand the structure of a blockchain and why/when it is better than a simple distributed database
2. Explain the significance of cryptographic algorithms in blockchain
3. Describe the features and importance of Bitcoin
4. Explain about the principles of Ethereum Virtual Machine
5. Design, build, and deploy smart contracts and distributed applications,

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcomes (PO’s)</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 1</td>
<td>2 2 1 1</td>
<td>1</td>
</tr>
<tr>
<td>CO 2</td>
<td>1 2 2 1</td>
<td>1</td>
</tr>
<tr>
<td>CO 3</td>
<td>2 2 2 2</td>
<td>2</td>
</tr>
<tr>
<td>CO 4</td>
<td>2 1 2 1</td>
<td>1</td>
</tr>
<tr>
<td>CO 5</td>
<td>2 3 3 2 2 2 2 2 2 2 2 2</td>
<td>2</td>
</tr>
</tbody>
</table>
Course Title: Wireless Sensor Networks

Course Code: P17CS743 | Semester: 7 | L:T:P: H - 4 : 0 : 0 : 4 | Credits: 3
Contact Period: Lecture:52 Hr, Exam: 3Hr | Weightage: CIE:50% SEE:50%

Introduction: The vision of Ambient Intelligence, Application Examples, Types of applications, Challenges for WSNs, Enabling Technologies for wireless sensor networks.

Single-node architecture: Hardware components, Operating systems: and execution environments: Embedded OS, Programming paradigms and application programming interfaces. Network Architecture: Sensor network scenarios, Optimization goals and figures of merit, Design principles for WSNs: Distributed organization, data centricity, Gateway concepts.

Self Study Component: In-network processing
11 Hours

Unit-2

Physical Layer: Introduction, Spread spectrum communications:, Packet transmissions and synchronization, quality of wireless channels and measures for improvement. MAC protocols: Fundamentals of MAC protocols: Requirements and design constraints for wireless MAC protocols, important classes of MAC protocols. MAC Protocols for WSNs: LEACH. IEEE802.15.4 MAC protocol

Self Study Component: SMAC protocol
10 Hours

Unit-3

Self Study Component: Geographic routing
11 Hours

Unit-4

Data Aggregation in WSN: Challenges in data aggregation, data aggregation techniques, Localization and Positioning: Properties of localization and positioning procedures, Possible approaches, Mathematical basics for the lateration problem, Single hop localization,

Self Study Component: Positioning in multihop environments
10 Hours

Unit-5

Naming and addressing: Fundamentals, Address and name management in wireless sensor networks, Assignment of MAC addresses, Distributed assignment of locally unique addresses: Address assignment algorithm. Time Synchronization: Introduction to time synchronization problem, Protocols based on sender/receiver synchronization: Light weight time synchronization protocol

Self Study Component: Timing –Sync protocol
10 Hours

Text Book:

Reference Books:
2. Wireless sensor networks Edited by C. S. Raghavendra Pub: Springer

Course Outcomes:
1. Explain Fundamental Concepts, applications and network architectures of WSN.
2. Describe the physical layer and MAC protocol concepts for communication in WSN.
3. Discuss the different routing protocols and issues.
4. Discuss the different data aggregation techniques and different positioning and localization algorithms.
5. Describe the naming, addressing and time synchronization in WSN.

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>Statement</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PS01</th>
<th>PS02</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Explain Fundamental Concepts, applications and network architectures of WSN.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>Explain the physical layer and MAC protocol concepts for communication in WSN</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>Analyze the different routing protocols and issues</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>Analyze the different data aggregation techniques and different positioning and localization algorithms</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>Explain the naming, addressing and time synchronization in WSN</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

| |
| 0.8 | 0.2 | | | | | | | | | | | | | | | | | | |

| |
Course Title: Object Oriented Modeling & Design with UML

<table>
<thead>
<tr>
<th>Course Code: P17CS744</th>
<th>Semester: 7th</th>
<th>L:T:P: H</th>
<th>CIE:50%</th>
<th>SEE:50%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4:0:4:4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites:
1. Object oriented Programming.
2. Object & Class concepts.

Course Content

Unit-1

Introduction, Modelling Concepts, class Modelling: Object Orientation, OO development, OO modelling history Modelling as Design Technique: Modelling, abstraction, The three models. Class Modelling: Object and class concepts, Link and associations concepts, Generalization and inheritance, A sample class model, Navigation of class models.

Advanced Class Modelling, State Modelling: Advanced object and class concepts, Association ends, N-ary associations, Aggregation, Abstract classes, multiple inheritance, Metadata, Reification, Constraints, Derived data, Packages, Practical tips. State Modelling: Events, States, Transitions and Conditions, State diagrams, State diagram behaviour.

Self Study Component: OO themes, Evidence for usefulness of OO development.

10 Hours

Unit-2

Advanced State Modelling, Interaction Modelling: Advanced State Modelling: Nested state diagrams, A sample state model, Relation of class and state models, Practical tips. Interaction Modelling: Use case models, Sequence models, Activity models. Use case relationships, Procedural sequence models.

Process Overview, System Conception, and Domain Analysis: Process Overview: Development stages, Development life cycle. System Conception: Devising a system concept, elaborating a concept, Preparing a problem statement. Domain Analysis: Overview of analysis, Domain class model, Domain state model, Domain interaction model.

Self Study Component: Nested states, Signal generalization, Concurrency.

11 Hours

Unit-3

Application Analysis, System Design: Application Analysis: Application interaction model, Application class model, Application state model, Adding operations. Making a reuse plan, Breaking a system in to sub-systems, Identifying concurrency, Allocation of sub-systems, Management of data storage, Handling global resources, Choosing a software control strategy, Handling boundary conditions, Setting the trade-off priorities, Common architectural styles.

Self Study Component: Overview of system design, Estimating performance.

10 Hours

Unit-4

Class Design, Implementation Modelling, Legacy Systems: Class Design: Overview of class design, Bridging the gap, Realizing use cases, Designing algorithms, Recursion downwards, Refactoring, Design optimization, Reification of behaviour, ATM example. Implementation Modelling: Overview of implementation, Fine-tuning classes, Fine-tuning generalizations, realizing associations, testing. Legacy Systems: Reverse engineering, Building the class models, Building the interaction model, Building the state model, Reverse engineering tips.

Self Study Component: Adjustment of inheritance, Organizing a class design.

11 Hours

Unit-5

Design Patterns – 1: What is a pattern and what makes a pattern? Pattern categories, Relationships between patterns. Pattern description Communication Patterns: Forwarder-Receiver, Client-Dispatcher-Server.
Self Study Component: Publisher-Subscriber.

Text Books:
2. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern-Oriented Software Architecture, A System of Patterns, Volume 1, John Wiley and Sons, 2007. (Chapters 1, 3.5, 3.6, 4)

Reference Books:

Course Outcomes:
At the end of the course the student would have the:
1. The Knowledge of the basic concepts of Object oriented modeling and Design.
2. Will be able to use the Object Oriented notations and process that extends from analysis through design to implementations.
3. Be able to use all the standard UML notations.
4. Capable to model the requirements with use cases and describe the dynamic behavior and structure of the design.
5. Easily create a modular design with components and relate the logical design to the physical environment.

CO-PO Mapping

<table>
<thead>
<tr>
<th>Course Outcomes (CO’s)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO – 1</td>
<td>3</td>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO – 2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO – 3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO – 4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO – 5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Open Elective-I

Course Title : Object Oriented Programming with Java

<table>
<thead>
<tr>
<th>Course Code : P17CSO751</th>
<th>Semester : 7</th>
<th>L :T:P:H : 4:0:0:4</th>
<th>Credits: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Period: Lecture: 52 Hrs, Exam: 3 Hrs</td>
<td>Weightage: CIE:50%, SEE:50%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Content

Unit-1

Object Oriented Concepts: Introduction to Object Oriented Concepts: A Review of structures, Procedure–Oriented Programming system, Object Oriented Programming System, Comparison of Object Oriented Language with C.

Program Structure in Java: Introduction - Importing Packages and Classes , Writing Simple Java Programs , Installing and Configuring Java Compiling and Running Java Program, Elements or Tokens in Java Programs, Java Statements , Command Line Arguments , Data Types, Declaration of Variables, User Input to Programs, Sample Programs. Data types, variables and arrays, Operators,

Self Study Component: Type casting in Java

11 Hours

Unit-2

Classes and Objects- Introduction, Class Declaration and Modifiers, Class Modifiers, Declaration of Class Objects, Assigning One Object to Another , Access Control for Class Members, Accessing Private Members of Class, Constructor Methods for Class, Overloaded Constructor Methods, Nested Classes, Final Class and Methods , Passing Arguments by Value and by Reference, Keyword this.

Methods- Introduction, Defining Methods, Overloaded Methods, Class Objects as Parameters in Methods, Access Control, Overriding Methods, Attributes Final and Static.

Self Study Component: Overloaded Constructor Methods

11 Hours

Unit-3

Inheritance: Inheritance-Introduction, Process of Inheritance, Types of Inheritances, Universal Super Class, Inhibiting inheritance of Class Using Final, Access Control and Inheritance, Multilevel Inheritance, Application of Keyword Super, Constructor Method and Inheritance, Method Overriding, Abstract Classes, Interfaces and Inheritance.

Interfaces- Introduction- Similarities between Interface and Class, Declaration of Interface, Implementation of interface, Multiple Interfaces.

Packages: Defining, Importing Packages and Classes into Programs, Path and Class Path, Access Control, Packages in Java SE, Java.lang Package and its Classes

Self Study Component: Dynamic Method Dispatch

10 Hours

Unit-4

Exception Handling - Introduction, Hierarchy of Standard Exception Classes, Keywords throws and throw, try, catch, and finally Blocks, Multiple Catch Clauses, Class Throwable, Unchecked Exceptions, Checked Exceptions

String Handling in Java - Introduction, Interface CharSequence , Class String, Methods for Extracting Characters from Strings, Methods for Comparison of Strings, Methods for Modifying Strings

Self Study Component: Methods for Searching Strings

10 Hours

Unit-5

Generic Programming- Introduction: General Benefits of Using Generics, Generics and Primitive Types, Declaration of Generic Class and Constructor Use of Object Class vs Generic
Class, Generic Class with Multiple Type Parameters, Generic Method, Generic Method Overloading, Generic Interface, Upper Bound on Types, Multiple Bounds on Types, Wildcard Bounded Wildcard

Applets: Introduction, Applet Architecture, Applet Class and Methods, Creating Applets, HTML Tags, Simple Applet Display Methods, Passing Parameters to Applets, Passive Applet Programs, Adding Images to Applet Windows, Display of Numerical Values on Applet Windows, Managing Colours in Applet Window, Interactive Applets with AWT Graphical Components, AWT Text fields in Applets, Animation in Applet Windows

Self Study Component: Overriding Methods in Generics Class

Text Books:

Reference Books:

Course outcomes:
1. CO1: Explain the object-oriented concepts and Java features
2. CO2: Apply the concepts of Class to develop simple Java programs.
3. CO3: Demonstrate the usage of Inheritance, Interfaces and Packages.
4. CO4: Develop programs using Exception Handling and String handling
5. CO5: Develop applications using Generic concepts and Applet.

CO-PO Mapping

<table>
<thead>
<tr>
<th>Semester: 7</th>
<th>Course code : P17CSO751</th>
<th>Title : Object Oriented Programming with Java</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Statement</td>
<td>PO</td>
</tr>
<tr>
<td>CO-1</td>
<td>Explain the object-oriented concepts and Java features</td>
<td>1</td>
</tr>
<tr>
<td>CO-2</td>
<td>Apply the concepts of Class to develop simple Java programs</td>
<td>2</td>
</tr>
<tr>
<td>CO-3</td>
<td>Demonstrate the usage of Inheritance, Interfaces and Packages.</td>
<td>2</td>
</tr>
<tr>
<td>CO-4</td>
<td>Develop programs using Exception Handling and String handling</td>
<td>2</td>
</tr>
<tr>
<td>CO-5</td>
<td>Develop applications using Generic concepts and Applet.</td>
<td>2</td>
</tr>
</tbody>
</table>

| 1.8 | 1.8 | 1.8 | 1.8 |
Course Title: Web Technologies

<table>
<thead>
<tr>
<th>Course Code: P17CSO752</th>
<th>Semester: 7</th>
<th>L:T:P:H: 4:0:0:4</th>
<th>Credits: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Period: Lecture: 52 Hrs, Exam: 3 Hrs</td>
<td>Weightage: CIE:50%, SEE:50%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Content

Unit-1

Self-study component: security, The Web Programmers Toolbox

10 Hours

Unit-2
Lists, Tables, Forms, Frames, Syntactic differences between HTML and XHTML.

Cascading Style Sheets: Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Colour, Alignment of text, The Box model, Background images, The and <div> tags.

Self-study component: Frames

10 Hours

Unit-3
The Basics of JavaScript: Overview of JavaScript, Object orientation and JavaScript, General syntactic characteristics, Primitives, operations, and expressions, Screen output and keyboard input, Control statements, Object creation and modification, Arrays, Functions, Constructor.

Self-study component: Pattern matching using regular expressions, Errors in scripts.

10 Hours

Unit-4
JavaScript and HTML documents: The JavaScript execution environment; The Document Object Model; Element access in JavaScript; Events and event handling; Handling events from the Body elements, Button elements, Text box and Password elements

Dynamic Documents With JavaScript: Introduction to dynamic documents; Positioning elements; Moving elements; Element visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the mouse cursor; Reacting to a mouse click;

Self-study component: Slow movement of elements; Dragging and dropping elements.

12 Hours

Unit-5
PHP: Origins and uses of PHP, Overview of PHP, General syntactic characteristics, Primitives, Operations and expressions, Output, Control statements, Arrays, Functions, Pattern matching, Form Handling, Files.

Self-Study Component: Cookies, Session tracking

10 Hours

Text Book:

Reference Books:
Course Outcomes
1. Develop web pages using various XHTML tags.
2. Design effective web pages using various style properties.
3. Design interactive web pages using java script.
5. Implement web pages using PHP scripts.

CO-PO Mapping

<table>
<thead>
<tr>
<th>Semester: 7</th>
<th>Course code : P17CSO752</th>
<th>Title : Web Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Statement</td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>Develop web pages using various XHTML tags.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Design effective web pages using various style properties</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Design interactive web pages using java script.</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Create dynamic documents using DOM object model</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Implement web pages using PHP scripts.</td>
<td>2</td>
</tr>
</tbody>
</table>

2.0 1.4 1.4 1.0 1.0 1.0
Course Title: Parallel Programming Laboratory

Course Code: P17CSL76 Semester: 7 L:T:P:H: 0:0:3:3 Credits: 1.5
Contact Period: 3 Hr/Week, Exam: 3 Hr Weightage: CIE:50%, SEE:50%

Course Contents

PART-A
OPENMP Programs
1. Write an OpenMp program which performs C=A+B & D=A-B in separate blocks/sections where A, B, C & D are arrays.
2. Write an OpenMp program to add all the elements of two arrays A & B each of size 1000 and store their sum in a variable using reduction clause.
3. Write an OpenMp program to multiply two matrices A & B and find the resultant matrix C.
4. Write an OpenMp program to find the number of processors, number of threads, etc (the environment information).
5. Write an OpenMp program to print all the letters of the alphabet A-Z using threads.
6. Write an OpenMp program to show how thread private clause works.
7. Write an OpenMp program to show how first private clause works (Factorial program).
8. Write an OpenMP program to find prime numbers (split)

PART-B
MPI PROGRAMS
1. Write a MPI program to send the message from a process whose rank=3 to all other remaining processes.
2. Write a MPI program where each processor sends an integer number and its rank to the master processor, where the master gathers all the information and prints the data accordingly.
3. Write a MPI program to broadcast a message.
4. Write a MPI program to find sum of 'n' integers on 'p' processors using point-to-point communication libraries call.
5. Write an MPI program where the master processor broadcasts a message “HELLO” to the remaining processors using broadcast system call.

Course Outcomes:
At the end of the course, the student should be able to:
1. Develop the programs using OPENMP.
2. Develop the programs using MPI.
3. Examine the performance of OPENMP, MPI Program.
Course Title: Machine Learning Laboratory

Course Code: P17CSL77 Semester: 7 L:T:P:H: 0:0:3:3 Credits: 1.5
Contact Period: 3 Hr/Week, Exam: 3 Hr Weightage: CIE:50%, SEE:50%

Course Contents

1. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.
2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.
3. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
4. Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets.
5. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
6. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/ API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.
7. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.
8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
9. Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
10. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Course Outcomes

1. Understand the implementation procedures for the machine learning algorithms.
2. Design Java/Python programs for various Learning algorithms.
3. Apply appropriate data sets to the Machine Learning algorithms.
4. Identify and apply Machine Learning algorithms to solve real world problems.
Unit-1
Classical Encryption Techniques Symmetric Cipher Model, Cryptography, Cryptanalysis and Brute-Force Attack, Substitution Techniques, Caesar Cipher, Mono alphabetic Cipher, Playfair Cipher, Hill Cipher, Poly alphabetic Cipher, One Time Pad. Block Ciphers and the data encryption standard: Traditional block Cipher structure, stream Ciphers and block Ciphers, Motivation for the feistel Cipher structure, the feistel Cipher, The data encryption standard, Self Study Component: DES encryption, DES decryption
11 Hours

Unit-2
10 Hours

Unit-3
Key Management and Distribution: Symmetric key distribution using Symmetric encryption, A key distribution scenario, Hierarchical key control, session key lifetime, a transparent key control scheme, Decentralized key control, controlling key usage, X-509 certificates. Certificates, X-509 version 3, public key infrastructure. User Authentication: Remote user Authentication principles, Mutual Authentication, one way Authentication, remote user Authentication using Symmetric encryption, Mutual Authentication, one way Authentication, Kerberos, Motivation, Kerberos version 4, Kerberos version 5, Remote user Authentication using Asymmetric encryption. Self Study Component: Mutual Authentication, one way Authentication
11 Hours

Unit-4
10 Hours

Unit-5
Transport and tunnel modes, combining security associations, authentication plus confidentiality, basic combinations of security associations, internet key exchange, key determinations protocol, header and payload formats. Self Study Component: cryptographic suits.
10 Hours

Text Book:

Reference Book:
Course Outcomes:
1. Define cryptography and its principles
2. Explain Cryptography algorithms
3. Illustrate Public and Private key cryptography
4. Understand Key management, distribution and certification
5. Implementation authentication protocols and analyze IPSec

CO-PO Mapping

<table>
<thead>
<tr>
<th>Semester : 8</th>
<th>Course code : P17CS81</th>
<th>Title : Cryptography & Network Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Statement</td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>Define cryptography and its principles</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Explain Cryptography algorithms</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Illustrate Public and Private key cryptography</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Understand Key management, distribution and certification</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Implementation authentication protocols and analyze IPSec</td>
<td>3</td>
</tr>
</tbody>
</table>
Elective – V

Course Title: Mobile Computing

<table>
<thead>
<tr>
<th>Course Code: P17CS821</th>
<th>Semester : 8</th>
<th>L : T : P : H : 4 : 0 : 0 : 4</th>
<th>Credits : 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contact Period: Lecture: 52 Hrs, Exam: 3 Hrs</td>
<td>Weightage: CIE:50%, SEE:50%</td>
<td></td>
</tr>
</tbody>
</table>

Course Content

Unit-1

Self Study Component: Mobile IP with IPv6, GSM Addresses and Identities.

11 Hours

Unit-2

Self Study Components: Spread Spectrum technology, Mobile phones and their features.

10 Hours

Unit-3

Self Study Components: Data Synchronization.

11 Hours

Unit-4

Building Wireless Internet Applications: Thin client overview: Architecture, the client, Middleware, messaging Servers, Processing a Wireless request, Protocol (WAP) Overview, Wireless Languages: Markup Languages, HDML, WML, HTML, cHTML, XHTML, VoiceXML.

Self Study Component: Wireless Applications.

10 Hours

Unit-5

J2ME: Introduction, CDC, CLDC, MIDP; Programming for CLDC, MIDlet model, Provisioning, MIDlet life-cycle, Creating new application, MIDlet event handling, Low level GUI Components, Communication in MIDP, Security Considerations in MIDP.

Self Study Components: GUI in MIDP, Multimedia APIs.

10 Hours

Text Books:
Reference Books:

Course Outcomes: The student will be able to:
1. Explain architecture of Mobile computing, GSM, SMS.
2. Explain state of art techniques in wireless communication.
3. Describe Mobile OS and Data Synchronization.
4. Discover CDMA, Mobile IP, WiMax.
5. Demonstrate program for CLDC, MIDP let model and security concerns

<table>
<thead>
<tr>
<th>Course Articulation Matrix (CAM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Outcomes (CO’s)</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Explain architecture of Mobile computing GSM, SMS.</td>
</tr>
<tr>
<td>Explain state of art techniques in wireless communication.</td>
</tr>
<tr>
<td>Describe Mobile OS and Data Synchronization</td>
</tr>
<tr>
<td>Discover CDMA, Mobile IP, WiMax.</td>
</tr>
<tr>
<td>Demonstrate program for CLDC, MIDP let model and security concerns</td>
</tr>
</tbody>
</table>

VII & VIII Semester Syllabus 2017-2018 25
Course Title: Computer Vision

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Semester</th>
<th>L :T:P:H</th>
<th>Credits</th>
<th>Contact Period</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>P17CS822</td>
<td>8</td>
<td>4:0:0:4</td>
<td>3</td>
<td>52 Hrs, Exam: 3 Hrs</td>
<td>CIE:50%, SEE:50%</td>
</tr>
</tbody>
</table>

Course Content

Unit-1

Introduction: Definition of Computer Vision, Image Formation: Geometric primitives and transformations- Geometric primitives, 2D transformations, 3D transformations; Photometric image formation – Lighting, Reflectance and shading; The Digital Camera – Sampling and aliasing.

Self Study Component: Color, Compression

10 Hours

Unit-2

Image Processing: Point Operators – Pixel transforms, Color transforms, Compositing and matting, Histogram equalization, Tonal Adjustment; Linear Filtering – Separable filtering, Examples of linear filtering, Band pass and steerable filters; More neighborhood operators- Non linear filtering, Morphology, Distance transforms, Connected components; Fourier transforms – Fourier transforms pairs, Two dimensional Fourier transforms, Wiener filtering.

Self Study Component: Application: Sharpening, blur and noise removal.

11 Hours

Unit-3

Feature detection and matching: Points and patches – Feature detectors, Feature descriptors, Feature matching, Feature tracking, applications: Performance-driven animation; Edges – Edge detection, Edge linking, Application: Edge editing and enhancement; Lines – Successive approximation, Hough transforms, Vanishing points.

Self Study Component: Application: Rectangle detection

10 Hours

Unit-4

Segmentation: Active Contours – Snakes, Dynamic snakes and Condensation, Scissors, Level Sets, Application: Contour tracking and rotoscoping; Split and merge – Watershed, Region splitting(divisive clustering), Region merging (agglomerative clustering), Graph based segmentation, Probabilistic aggregation; Mean shift and mode finding – K-means and mixtures of Gaussians, Mean Shift, Normalized cuts; Graph cuts and energy based methods.

Self Study Component: Application: Medical image segmentation.

11 Hours

Unit-5

Feature- based alignment: 2D and 3D feature-based alignment – 2D alignment using least squares, Application-Panography, Iterative algorithms, Robust least squares and RANSAC, 3D alignment; Pose estimation – Linear algorithms, Iterative algorithms, Application: Augmented reality; Geometric intrinsic calibration - Calibration patterns, Vanishing Points.

Self Study Component: Application: Single view metrology.

10 Hours

Text Books:

Course Outcomes:

After Learning all the units of the course, the student is able to:

1. Understand image formation through geometric transformation
2. Understand fundamental concepts of image processing
3. Explain various types of feature detection methods
4. Explain different types of segmentation types
5. Understand concepts of feature based alignment

<table>
<thead>
<tr>
<th>CO</th>
<th>Statement</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS 1</th>
<th>PS 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understand image formation through geometric trans-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>formation</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>Understand fundamental concepts of image processing</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>Explain various types of feature detection methods</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>Explain different types of segmentation types</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>Understand concepts of feature based alignment</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Department of Computer Science & Engineering

Course Title: Software Testing
Course Code: P17CS823 Semester: 8th L:T:P:H : 4:0:0:4 Credits: 3
Contact Period: Lecture: 52 Hr, Exam: 3 Hr Weightage: CIE:50% SEE:50%

Course Content

Unit-1
Basics of Software Testing and Examples: Basic definitions, Test cases, Insights from a Venn diagram, Identifying test cases, Error and fault taxonomies, Levels of testing. Examples: Generalized pseudo code, the triangle problem, The NextDate function, the commission problem.
Self Study Component: The SATM (Simple Automatic Teller Machine) problem.

10 Hours

Unit-2
Decision Table-Based Testing: Decision tables, Test cases for the triangle problem, Test cases for the Next Date function, Test cases for the commission problem, Guidelines and observations. Data Flow Testing: Definition-Use testing, Slice-based testing, Guidelines and observations. Levels of Testing: Traditional view of testing levels, Alternative life-cycle models, The SATM system. Separating integration and system testing. Integration Testing: A closer look at the SATM System, Decomposition-based.
Self Study Component: Call graph-based, Path-based integrations, Case study.

10 Hours

Unit-3
Self Study Component: Class Testing: Methods as units, Classes as units.

12 Hours

Unit-4
Self Study Component: State chart-based system testing.

10 Hours

Unit-5
Exploratory Testing: The context-driven school, Exploring exploratory testing, Exploring a familiar example, Exploratory and context-driven testing observations. Model-Based Testing: Testing based on models, Appropriate models, Use case-based testing, Commercial tool support for model-based testing, Test-Driven Development: Test-then-code cycles, Automated test execution, Java and JUnit example, Remaining questions, Pros, cons, and open questions of TDD.
Self Study Component: Retrospective on MDD versus TDD.

10 Hours

Text Book:

Reference Books:

Course Outcomes: Upon Completion of the course, students shall be able to
1. **Choose** the right type of software testing process for any given real world problem.
2. **Execute** the software testing process in efficient way.
3. **Illustrate** the testing process by using several testing tools.
4. **Establish** a quality environment as specified in standards for developing quality software.
5. **Analyze** the quality procedures based on the past experience.

CO-PO Mapping

<table>
<thead>
<tr>
<th>Semester : 8</th>
<th>Course code : P17CS823</th>
<th>Title : Software Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Choose the right type of software testing process for any given real world problem.</td>
<td>PO 1</td>
</tr>
<tr>
<td>CO2</td>
<td>Execute the software testing process in efficient way.</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO3</td>
<td>Illustrate the testing process by using several testing tools.</td>
<td>PO 3</td>
</tr>
<tr>
<td>CO4</td>
<td>Establish a quality environment as specified in standards for developing quality software.</td>
<td>PO 4</td>
</tr>
<tr>
<td>CO5</td>
<td>Analyze the quality procedures based on the past experience.</td>
<td>PO 5</td>
</tr>
</tbody>
</table>

2 2.4 2.4 0.8 0.4 2
Course Title : Web Security

<table>
<thead>
<tr>
<th>Course Code : P17CS824</th>
<th>Semester : 8</th>
<th>L:T:P:H : 4:0:0:4</th>
<th>Credits: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Period: Lecture: 52 Hr, Exam: 3 Hr</td>
<td>Weightage: CIE:50%, SEE:50%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Content

Unit-1

Self Study Component: Legal Restrictions on Cryptography.

10 Hours

Unit-2

The Web’s War on Your Privacy: Understanding Privacy, User-Provided Information, Log Files, Understanding Cookies, Web Bugs, Conclusion; **Privacy-Protecting Techniques:** Choosing a Good Service Provider, Picking a Great Password, Cleaning Up After Yourself, Avoiding Spam and Junk Email, Identity Theft; **Privacy-Protecting Technologies:** Blocking Ads and Crushing Cookies, Anonymous Browsing.

Self Study Component: Secure Email, Backups and Anti Theft: Using Backups to Protect Your Data, Preventing theft.

11 Hours

Unit-3

Physical security for Servers: Planning for the Forgotten Threats, Protecting Computer Hardware, Protecting Your Data, **Host Security for Servers:** Current Host Security Problems, Securing the Host Computer, minimizing Risk by Minimizing Services, Operating Securely, Secure Remote Access and Content Updating, firewalls and the Web, **Securing Web Applications:** A Legacy of Extensibility and Risk, Rules to Code By, Security Using Fields, Rules for Programming languages, Using PHP Securely, Writing Scripts That Run with Additional Privileges, Connecting to Databases.

Self Study Component: Hidden Fields and Cookies

10 Hours

Unit-4

Deploying SSL Server Certificates: Planning for your SSL Server, Creating SSL Servers with FreeBSD, Installing an SSL Certificate on Microsoft IIS, When Things Go Wrong; **Securing Your Web Service:** Protecting Via Redundancy, Protecting Your DNS, Protecting Your Domain Registration.

Self Study Component: Obtaining a Certificate from a Commercial CA.

10 Hours

Unit-5

Controlling Access to Your Web Content: Access Control Strategies, Controlling Access with Apache, Controlling Access with Microsoft IIS; **Client-Side Digital Certificates:** Client Certificates, A Tour of the VeriSign Digital ID Center; **Pornography, Filtering Software and Censorship:** Pornography Filtering, PICS, RSAC, **Privacy Policies, Legislation and P3P:** Policies that Protect Privacy and Privacy Policies.

Self Study Component: Children’s Online Privacy Protection Act, P3P.

11 Hours

Text Book :

Reference Books:
3. **Hacking Exposed Web Applications 3**: Joel Scambray, Vincent Liu, Caleb Sima, TMH.

Course Outcomes: The students should be able to
1. **Understand** the web security landscape and risks of running a web server on the internet by defending against risks.
2. **Analyze** the hype surrounding web security and use the phrase "secure web server," and discuss overall strategies for reducing the risks of operating a site and publishing.
3. **Apply** Privacy-Protecting Technologies Backups and Anti Theft.
5. **Generate & Deploy** SSL Server Certificates, securing the web services.
6. **Controlling** Access to your Web Content, Client-Side Digital Certificates and Privacy Policies, Legislation and P3P.

<table>
<thead>
<tr>
<th>Semester : 8</th>
<th>Course code : P17CS824</th>
<th>Title : Web Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO Statement</td>
<td>PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 12 PS O1 PS O2</td>
<td></td>
</tr>
<tr>
<td>CO1 Understand Security Landscape and Protocols</td>
<td>3 2 3</td>
<td>2</td>
</tr>
<tr>
<td>CO2 Analyze the hype surrounding web security and use the phrase "secure web server," and discuss overall strategies for reducing the risks of operating a site and</td>
<td>2 2 2 3</td>
<td>2</td>
</tr>
<tr>
<td>CO3 Apply Privacy-Protecting Technologies Backups and Anti Theft, Physical security, Host Security and Web Application Security for Servers.</td>
<td>2 2 3</td>
<td>2</td>
</tr>
<tr>
<td>CO4 Generate & Deploy SSL Server Certificates, securing the web services.</td>
<td>2 2 3</td>
<td>2</td>
</tr>
<tr>
<td>CO5 Controlling access to your Web Content, Client-Side Digital Certificates and Privacy Policies, Legislation and P3P</td>
<td>2 2 2 3</td>
<td>3</td>
</tr>
</tbody>
</table>

2.2 2 2.6 3 2.2
Elective-VI

Course Title: Network Management Systems

<table>
<thead>
<tr>
<th>Course Code: P17CS831</th>
<th>Semester : 8</th>
<th>L:T:P:H: 4:0:0:4</th>
<th>Credits : 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Period: Lecture: 52 Hrs., Exam: 3 Hrs</td>
<td>Weightage : CIE:50%, SEE:50%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites: Computer Networks.

Course Content

Unit-1

Self Study Component: Abstract Syntax Notation One: ASN.1

10 Hours

Unit-2

Self Study Component: SNMP MIB Group, And Functional Model

10 Hours

Unit-3

SNMP Management RMON: What is Remote Monitoring?, RMON SMI and MIB, RMON1, RMON2.

Self Study Component: ATM Remote Monitoring, A Case Study of Internet Traffic Using RMON.

11 Hours

Unit-4

Self Study Component: Service Level Management.

11 Hours
Unit-5

Advanced Management Topics: Early Web-Based Development.

Self Study Component: XML-Based NM Technology.

10 Hours

Text Book:

Reference Book:

Course Outcomes: Upon completion of this course, the students will be able to,
1. **Analyze** the issues and challenges pertaining to management of emerging network technologies and apply network management standards to manage practical networks.
2. **Describe** basic foundations of model that are needed to build Network Management architecture, protocols, SMNP and IP network management.
3. **Describe** the management features of SNMP v2, SNMP v3 and RMON for monitoring the behaviour of the network.
4. **Describe** network management for the management of telecommunication, which includes network, systems, operations and business services and management.
5. **Analyze** the various technologies of network management with respect to applications of broadband networks and the latest trends in management technology.

CO-PO Mapping

<table>
<thead>
<tr>
<th>Semester : 8</th>
<th>Course code : P17CS831</th>
<th>Title : Network Management Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Statement</td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>Analyze the issues and challenges pertaining to management of emerging network technologies and apply network management standards to manage practical networks.</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Describe basic foundations of model that are needed to build Network Management architecture, protocols, SMNP and IP network management</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Describe the management features of SNMP v2, SNMP v3 and RMON for monitoring the behaviour of the network</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Describe network management for the management of telecommunication, which includes network, systems, operations and business services and management</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Analyze the various technologies of network management with respect to applications of broadband networks and the latest trends in management technology</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2</td>
</tr>
</tbody>
</table>
Course Title: Software Project Management

<table>
<thead>
<tr>
<th>Course Code: P17CS832</th>
<th>Semester: 8</th>
<th>L:T:P:H: 4:0:0:4</th>
<th>Credits: 3</th>
</tr>
</thead>
</table>

Contact Period: Lecture: 52 Hrs, Exam: 3 Hrs Weightage: CIE:50%, SEE:50%

Course Content

Unit-1
Metrics: Introduction, The Metrics Roadmap, A Typical Metrics Strategy, Set Targets and track Them, Understanding and Trying to minimize variability, Act on data, People and Organizational issues in Metrics Programs, Common Pitfalls to watch out for in Metrics Programs, Matrices implementation checklists and tools, Software configuration management configuration status accounting, configuration audit, software configuration management in geographically distributed teams,

Self Study Component: software configuration management tools and automation. 11 Hours

Unit-2

Self Study Component: Interfaces to the Process Database 10 Hours

Unit-3
Software Requirements gathering, Metrics for requirements phase, Estimation: Design and Development Phases: Some differences in our chosen approach, salient features of design, evolving an architecture/ blueprint, design for reusability, technology choices constraints, design to standards, design for portability, user interface issues, design for testability, design for diagnose ability, design for install ability, inter-operability design, challenges during design and development phases, skill sets for design and development, metrics for design and development phases,

Self Study Component: design for maintainability 11 Hours

Unit-4
Project management in the testing phase, Project management in the Maintenance Phase: Introduction, Activities during Maintenance Phase, management issues during Maintenance Phase, Configuration management during Maintenance Phase, skill sets for people in the maintenance phase, estimating size, effort, and people resources for the maintenance phase, advantages of using geographically distributed teams for the maintenance phase,

Self Study Component: metrics for the maintenance phase. 10 Hours

Unit-5
Globalization issues in project management, Impact of the internet on project management, the effect of internet on project management, managing projects for the internet, Effect on the project management activities. People focused process models: Growing emphasis on people centric models, other people focused models in the literature.

Self Study Component: people capability maturity model (P-CMM), 10 Hours

Text Book:

Reference Books:

Course Outcomes: At the end of this course students will be able to:

1. Evaluate a project to develop the scope of work, provide accurate cost estimates and to plan the various activities.
2. Apply risk management analysis techniques that identify the factors that put a project at risk and to quantify the likely effect of risk on project timescales.
3. Identify the resources required for a project and to produce a work plan and resource schedule.
4. Monitor the progress of a project and to assess the risk of slippage, revising targets counteract drift.
5. Use appropriate metrics to manage the software development outcome, develop research methods and techniques appropriate to defining, planning and carrying out a research project within your chosen specialist area within the management of software projects.

CO-PO Mapping

<table>
<thead>
<tr>
<th>Semester: 8</th>
<th>Course code : P17CS832</th>
<th>Title : Software Project Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 12 PS 01 PS 02</td>
<td></td>
</tr>
<tr>
<td>Evaluate a project to develop the scope of work, provide accurate cost estimates and to plan the various activities</td>
<td>1 1 2 2 2 3 2 1</td>
<td></td>
</tr>
<tr>
<td>Apply risk management analysis techniques that identify the factors that put a project at risk and to quantify the likely effect of risk on project</td>
<td>1 1 1 1 2 2 1 1 1</td>
<td></td>
</tr>
<tr>
<td>Identify the resources required for a project and to produce a work plan and resource schedule</td>
<td>1 1 1 2 1 2 1</td>
<td></td>
</tr>
<tr>
<td>Monitor the progress of a project and to assess the risk of slippage, revising targets counteract drift</td>
<td>2 2 3 1</td>
<td></td>
</tr>
<tr>
<td>Use appropriate metrics to manage the software development outcome, develop research methods and techniques appropriate to defining, planning and carrying out a research project within your chosen specialist area within the management of software projects.</td>
<td>2 2 2 3 2</td>
<td></td>
</tr>
</tbody>
</table>
Prerequisites: Software Engineering

Course content

Unit-1
INTRODUCTION: Software is new product development – Iterative development – Risk (Driven and Client) (Driven iterative planning – Time boxed iterative development – During the Iteration, No changes from external stakeholders – Evolutionary and adaptive Development (Evolutionary requirements analysis – Early “Top Ten” high level requirements and skilful analysis. Evolutionary and adaptive planning – Incremental delivery – Evolutionary delivery.

Self Study Component: The most common mistake- Specific iterative and Evolutionary methods.

12 Hours

Unit-2

Self Study Component: The facts of change on software projects – Key motivations for iterative Development

10 Hours

Unit-3

Self Study Component: Fact versus fantasy – Strengths versus “Other” history

10 Hours

Unit-4

Self Study Component: Common mistakes and Misunderstandings, Sample Projects.

10 Hours

Unit-5

Self Study Component: Project management– Environment

10 Hours

Text Books:
Reference Book:

Course Outcomes
1. Demonstrate a systematic understanding of current agile techniques and practices used in industry.
2. Apply industry standard agile techniques in developing software in a team.
3. Use group and individual retrospectives to critically evaluate and propose improvements in developing software in a professional context.
4. Apply concepts of XP and EVE in developing software
5. Managing the changes applying different testing techniques

CO-PO Mapping

<table>
<thead>
<tr>
<th>Course Outcomes (CO’s)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO – 1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO – 2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO – 3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO – 4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO – 5</td>
<td>1</td>
<td>2</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Course Title: Business Intelligence & Applications

Course Code: P17CS834 Semester: 8th L:T:P:H: 4:0:0:4 Credits: 3
Contact Period: Lecture: 52 Hr, Exam: 3 Hr Weightage: CIE:50% SEE:50%

Course Content

Unit-1

Introduction to OLTP and OLAP: On-Line Transaction Processing (OLTP) and On-Line Analytical Processing (OLAP): Different, OLAP architectures, OLTP and OLAP.

Self Study Component: Data models for OLTP and OLAP

11 Hours

Unit-2
Role of OLAP tools in the BI architecture, OLAP performance directly on operational databases, A peek into the OLAP operations on multidimensional data, Leveraging ERP data using analytics.

Self Study Component: Need for BI at virtually all levels

10 Hours

Unit-3
BI Definitions and concepts: BI Component framework, Need of BI, BI Users, Business Intelligence applications, BI Roles and responsibilities, Best practices in BI/DW, The complete BI professional, Popular BI tools.

Basis of data integration: Need for data warehouse, Definition of data warehouse, data mart, OSS, Raiph Kimball’s approach vs. W.H.Inmon’s approach, Goals of a data warehouse, constituents of a data warehouse, Extract, transform, load, data Integration, Data integration technologies, Data quality.

Self Study Component: Data profiling

10 Hours

Unit-4
Multidimensional data modelling: Introduction, Data modelling basis, Types of data model, Data modelling techniques, Fact table, Dimension table, typical dimensional models, Dimensional modelling life-cycle, designing the dimensional model, Step-by-step lab guide to analyze data using MS Excel 2010

Measures, metrics, KPIs, and Performance management: Understanding measures and performance, Measurement system terminology, Navigating a business enterprise, and metrics supply chain, “Fact-Based Decision Making” and KPIs

Self Study Component: role of metrics

11 Hours

Unit-5
KPI Usage in companies, business metrics and KPIs, Connecting the dots: Measures to business decisions and beyond

Basics of enterprise reporting: Reporting perspectives common to all levels enterprise, Report standardization and presentation practices, Balanced scorecard, Dash boards and its creation,
Scorecards vs. Dashboards, The buzz behind analysis, Step-by-step lab guide to create enterprise reports using MS Access.

Self Study Component: Enterprise reporting characteristics in OLAP world, 10 Hours

Text Books:
2. David Loshin - Business Intelligence: The Savvy Manager’s Guide, Publisher: Morgan Kaufmann

Reference Books:
1. Larissa T Moss and Shaku Atre – Business Intelligence Roadmap : The Complete Project Lifecycle for Decision Support Applications, Addison Wesley Information Technology Series

Course Outcomes:
1. **Illustrate** role of business intelligence in the IT applications.
2. **Construct** OLAP operations to analyze business intelligence.
3. **Apply** various ETL techniques of data integration.
4. **Identify** data modeling technique to analyze data for a successful business enterprise.
5. **Construct** enterprise reports for various situations of a business enterprise

CO-PO Mapping

<table>
<thead>
<tr>
<th>Semester: 8</th>
<th>Course code : P17CS834</th>
<th>Title : Business Intelligence & Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Statement</td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>Illustrate role of business intelligence in the IT applications.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Construct OLAP operations to analyze business intelligence.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Apply various ETL techniques of data integration.</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Identify data modeling technique to analyze data for a successful business enterprise.</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>Construct enterprise reports for various situations of a business enterprise</td>
<td>2</td>
</tr>
</tbody>
</table>

| 2 | 2 | 2 | 2 | 2 | 2.6 |
Open Elective-II

Course Title: Data Base Systems

<table>
<thead>
<tr>
<th>Course Code: P17CS0841</th>
<th>Semester : 8</th>
<th>L:T:P:H : 4:0:0:4</th>
<th>Credits: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Period : Lecture :52 Hr, Exam: 3Hr</td>
<td>Weightage : CIE:50% SEE:50%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course content

Unit-1

Introduction: An example: Characteristics of Database approach; Advantages of using DBMS approach; A brief history of database applications; Data models, schemas and instances; Three-schema architecture and data independence; Database languages and interfaces; The database system environment.

Self Study Component: Introduction to structured, semi structured and unstructured data.

11 Hours

Unit-2

Entity-relationship model: Using High-Level Conceptual Data Models for Database Design; An Example Database Application; Entity Types, Entity Sets, Attributes and Keys; Relationship types, Relationship Sets, Roles and Structural Constraints; Weak Entity Types; Refining the ER Design; ER Diagrams.

Self Study Component: Examples on ER diagrams.

10 Hours

Unit-3

Relational model and relational algebra: Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update Operations, Transactions and dealing with constraint violations; Unary Relational Operations: SELECT and PROJECT; Relational Algebra Operations from Set Theory; Binary Relational Operations.

Self Study Component: Additional Relational Operations; Examples of Queries in Relational Algebra

11 Hours

Unit-4

Relational Database Design Using ER-to-Relational Mapping.

Database design: Informal Design Guidelines for Relation Schemas; Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form.

Self Study Component: Properties of relational decompositions, multivalued dependencies and 4NF.

10 Hours

Unit-5

Transaction processing concepts: Introduction to Transaction processing; Transactions and System concepts; Desirable properties of transactions; Characterizing Schedules based on recoverability, Characterizing schedules based on Serializability, Characterizing schedules based on two phase locking technique for concurrency control.

Self Study Component: Concurrency control based on timestamp ordering.

10 Hours

Text Books:

Reference Books:

Course outcomes : At the end of the course the student should be able to
1. **Design** an ER model for a given example from real world description.
2. **Design** relational models for a given application using schema definition and constraints.
3. **Develop** complex queries using SQL to retrieve the required information from database.
4. **Apply** suitable normal forms to normalize the given database.
5. **Determine** the roles of concurrency control in database design.

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>Statement</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Design an ER model for a given example from real world description</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Design relational models for a given application using schema definition and constraints.</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Develop complex queries using SQL to retrieve the required information from database</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Apply suitable normal forms to normalize the given database</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Determine the roles of concurrency control in database design.</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

| | 2.6 | 2.2 | 2.4 | 1 | 2 | | | | | | | 2 | | 2 | 2.6 |
Course Title: Mobile Application Development

Course Code: P17CSO842
Semester: 8
L:T:P:H: 4:0:0:4
Credit: 3

Contact Period: Lecture: Exam: 52 Hr, Exam: 3Hr
Weightage: CIE:50% SEE:50%

Course content

Unit-1

Preliminary considerations: Why you might be here? Cost of development, Importance of mobile strategies, Why is mobile development difficult?

Diving into mobile: app or website? Mobile Web Presence, Mobile Applications, Marketing

Creating consumable web services for mobile devices: What is a Web Service? Web Services Languages (Formats), Creating an Example Web Service, Debugging Web Services.

Self study component: Mobile development today, Mobile Myths, Third party Frameworks.

12 Hours

Unit-2

Mobile user interface design: Effective Use of Screen Real Estate, Understanding Mobile Application Users, Understanding Mobile Information Design, Understanding Mobile Platforms, Using the Tools of Mobile Interface Design

Mobile websites: Choosing a Mobile Web Option, Adaptive Mobile Websites, Dedicated Mobile Websites.

Self study component: Mobile Web Apps with HTML5.

10 Hours

Unit-3

Getting started with iOS: The iPhone Craze, Getting the Tools You Need, iOS Project, Debugging iOS Apps, Objective-C Basics, Hello World App, Building the Derby App in iOS.

Self study component: Building the Derby App in iOS, Other Useful iOS Things.

10 Hours

Unit-4

Signing and Publishing your Application: Test your application, Attach and end user License Agreement if desired, Create and attach an Icon and Label, clean Up for Release, Version Your Application, Obtaining a signing Certificate and API Key, Signing Your Application, Retesting your Application.

Persistent Data Storage: SQLite Databases and Content Providers: Databases-Basic Structure of the Micro Jobs database Class, Reading Data from the Database, Modifying the Database. Content Providers-Introducing Notepad, Content Providers, consuming a Content Provider.

Self study component: Publishing on Android Market, signing up As an Android Developer.

10 Hours

Unit-5

Location and Mapping: Location-Based services, Mapping, The Google Maps Activity, The Map view and Map Activity, Working with Map views.

Building a View: Android GUI Architecture, Assembling a graphical Interface, Wiring up the Controller.

Self study component: Location without Maps, The Menu.

10 Hours
Text Books:
2. Rogers, Android Application Development, Shroff/O’Reilly Publications, 2009 (chapter 7, 8, 9 and 10)

Reference Book:

Course Outcomes After learning all the units of the course, the student is able to,
1. Develop simple consumable web services for mobile devices
2. Design user interfaces for mobile application.
3. Develop simple mobile app either by using ANDROID mobile development framework or iOS mobile development framework.
4. Apply the number of steps that any application developer has to go through in order to prepare and submit an application to Android Market.
5. Develop views, Location-based services and mapping for a given problem.

<table>
<thead>
<tr>
<th>Course Articulation Matrix (CAM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Outcomes</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>
Course Content

Unit-1

Self Study Component: stty: Displaying and Setting Terminal Characteristics

10 Hours

Unit-2

Self Study Component: od: Displaying Data in Octal, The spell and ispell, cmp: Comparing Two Files

10 Hours

Unit-3

Self Study Component: Compressing Files, gzip, gunzip, zip and unzip commands, tar command

10 Hours

Unit-4

Simple Filters: The Sample Database, pr: Paginating Files, head: Displaying the Beginning of a File, tail: Displaying the End of a File, tr: Translating Characters, An Example: Displaying a Word-count List

Self Study Component: cut: Slitting a File Vertically, paste: Pasting Files, sort: Ordering a File, uniq: Locate Repeated and Non repeated Lines

10 Hours

Unit-5

SHELL Programming: The Shell's Interpretive Cycle, Pattern Matching TheWild-cards, Escaping and Quoting, Redirection: The Three Standard Files, /dev/null and /dev/tty: Two

Self Study Component: handling of signals using the trap etc.

12 Hours

Text Book:

Reference Books:

Course Outcomes
1. Apply the commands on files and directories to manage UNIX file system
2. Compare different types of file supported by UNIX operating system.
3. Understand file Permission commands.
4. Analyze process control, daemon characteristics, job control.
5. Develop shell scripts for simple applications.

CO-PO mapping

<table>
<thead>
<tr>
<th>Semester: 8</th>
<th>Course code : P17CSO843</th>
<th>Title : Unix and Shell Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Statement</td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>Apply the commands on files and directories to manage UNIX file system</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Compare different types of file supported by UNIX operating system.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Understand file Permission commands.</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Analyze process control, daemon characteristics, job control.</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Develop shell scripts applications for simple</td>
<td>2</td>
</tr>
</tbody>
</table>

2.6 2.2 2.0 2 2 2 2 2 2 2 2 2.5
Course Title: Python Programming

<table>
<thead>
<tr>
<th>Course Code : P17CSO844</th>
<th>Semester : 8</th>
<th>L:T:P:H : 4:0:0:4</th>
<th>Credits: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Period: Lecture: 52 Hrs, Exam: 3 Hrs</td>
<td>Weightage: CIE:50%, SEE:50%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Content

Unit-1
The python programming language, what is programming, the first program, values and types, variables, variable and keywords, operators and operands, expression and statements, string operations, comments, function calls, type conversion functions, math functions, composition, adding new functions, definition and uses, flow of execution, parameters and arguments, variables and parameters are local, stack diagrams.
Self study component: Interface design, Refactoring
11 Hours

Unit-2
Modulus operator, Boolean expression, logical operators, conditional execution (if), alternative execution(if-else) , chained conditionals (if-elif-else), nested conditionals, iterations: multiple assignment , updating variables , the while statement, break, square root, String: string slices, immutability, searching, looping and counting , string methods, The in operator, string comparison.
Self study component: Reading word lists.
10 Hours

Unit-3
Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search. Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list arguments. Tuples: tuples are immutable, tuple assignment, tuples are return values, variable-length argument tuples, list and tuples.
Self study component: Markov analysis.
10 Hours

Unit-4
Dictionaries: create dictionary, convert by using dict(), operation on dictionary (add, delete, get copy), set: create set , convert from other data types with set, use of in , combinations and operators. Classes and objects: what are objects, define a class with class, inheritance, override a method, add a method, get and set values with properties, method types.
Self study component: Compare data structures.
11 Hours

Unit-5
Files input/output, structure text files, structured binary files.
Self study component: HDF5
10 Hours

Textbooks:
1. Think Python: How to Think Like a Computer Scientist Allen B. Downey Shroff O’Reilly Publishers 2nd edition 2016 (module 1-chapter 1,2,3 module 2-chapter 5,7 and 8, module 3- chapter 10 and 12)
 (https://greenteapress.com/thinkpython2/thinkpython2.pdf)
Reference Books:
1. Introduction to Programming in Python: An Inter-disciplinary Approach Robert Sedgewick, Kevin Wayne, Robert Dondero Pearson India Education Services Pvt. Ltd 2016

Course Outcomes: At the end of the course the student will be able to:
1. Develop python programs using modular approach.
2. Implement python programs for demonstrating Operators, Control statements and Strings
3. Create applications using python data structures.
4. Design user defined data structures.
5. Usage of file system in python

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcomes (PO’s)</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

--