-P.E.S. COLLEGE OF ENGINEERING, MANDYA

(AN AUTONOMOUS INSTITUTION AFFILIATED TO VTU, BELAGAVI)

MASTER OF TECHNOLOGY IN

VLSI DESIGN AND EMBEDDED SYSTEM

SCHEME AND SYLLABUS

2024-25

DEPARTMENT OF ELECTRONICS AND COMMUNICATION **ENGINEERING**

P.E.S COLLEGE OF ENGINEERING, MANDYA-571401 **KARNATAKA**

Vision

PESCE shall be a leading institution imparting quality engineering and management education developing creative and socially responsible professionals.

Mission

- ➤ Provide state of the art infrastructure, motivate the faculty to be proficient in their field of Specialization and adopt best teaching-learning practices.
- ➤ Impart engineering and managerial skills through competent and committed faculty using Outcome based educational curriculum.
- ➤ Inculcate professional ethics, leadership qualities and entrepreneurial skills to meet the societal needs.
- ➤ Promote research, product development and industry-institution interaction.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

About the Department:

The department of Electronics and Communication Engineering was incepted in the year 1967 with an undergraduate program in Electronics and Communication Engineering. Initially program had an intake of 60 students and presently 150 students graduate every year. The long journey of 50 years has seen satisfactory contributions to the society, nation and world. The alumni of this department have strong global presence making their alma mater proud in every sector they represent.

Department has started its PG program in the year 2012 in the specialization of VLSI design and Embedded systems. Equipped with qualified and dedicated faculty, department has focus on VLSI design, Embedded systems and Image processing. The quality of teaching and training has yielded high growth rate of placement at various organizations. Large number of candidates pursuing research programs (M.Sc/Ph D) is a true testimonial to the research potential of the department.

Vision

The department of E & C would endeavour to create a pool of engineers who would be extremely competent technically, ethically strong also fulfil their obligation in terms of social responsibility.

Mission

- ➤ M1: Adopt the best pedagogical methods and provide the best facility, infrastructure and an ambience conducive to imbibe technical knowledge and practicing ethics.
- ➤ M2:Group and individual exercises to inculcate habit of analytical and strategic thinking to help the students to develop creative thinking and in still team skills
- ➤ M3:MoUs and Sponsored projects with industry and R & D organizations for Collaborative learning.
- ➤ M4: Enabling and encouraging students for continuing education and moulding them for life-long learning process.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION **ENGINEERING**

(A) Programme Learning Objectives (PLOs)

M.Tech in VLSI Design and Embedded system during two years term, aims to

- 1. Provide the students with strong fundamental and advanced knowledge in VLSI design and Embedded system with an emphasis to solve engineering problems.
- 2. Train the students in VLSI and Embedded system design tools and make them fit for the industries.
- 3. Inculcate in students the professional and ethical attitude, effective Communication skills, team spirit and nurture them as leaders.
- 4. Provide teaching skills and inculcate spirit of research.
- 5. Motivate to continue education leading to doctoral degree and choose research as Career option.

(B) Programme educational outcomes

The objectives aim to produce qualified Electronic Engineering Post-graduates who will:

- PEO 1: Identify and apply appropriate Electronic Design Automation (EDA) tools to solve real world problems in VLSI and Embedded Systems domain so as to create innovative products and systems.
- PEO 2: Develop managerial skill and apply appropriate approaches in the domain of VLSI design and Embedded Systems incorporating safety, sustainability and become a successful professional or an Entrepreneur in the domain.
- PEO 3: To exhibit professional competence and leadership qualities with harmonious blend of ethics leading to an integrated personality development.

(C) Programme Outcomes (POs):

The Master of Technology Programme in Electronics and Communication Engineering [M.Tech in VLSI Design and Embedded systems] must demonstrate that its Post graduates have

PO1: Ability to solve multidisciplinary problems using VLSI circuits in multiple ways and provide optimized solutions.

PO2: Demonstrate a degree of mastery over the area of VLSI Design and Embedded Systems. The mastery should be a level higher than the requirements of the bachelor's in electronics & communication engineering program.

PO3: Ability to use techniques and modern CAD tools so as to implement them in engineering practice to develop professional skills that will prepare the students for immediate employment in the relevant branch of engineering in industry.

PO4: Acquire professional and intellectual integrity, research ethics and execute socioconcern projects related to modern VLSI and embedded systems

PO5: Write and present a substantial technical report/document in the field of VLSI design and embedded systems

Program Specific Outcomes:

PSO-1: An ability to understand the basic concepts in VLSI DESIGN AND EMBEDDED SYSTEMS and to apply them in the design and implementation of VLSI AND EMBEDDED CIRCUITS

PSO-2: An ability to solve complex problems in VLSI DESIGN AND EMBEDDED SYSTEMS, using latest hardware and software tools, along with analytical skills to arrive at appropriate solutions.

				I – Semeste	r					
~-			Teacl	Teaching Hours/Week			Examination Marks			
Sl. No.	Course Type	Course Code	Course Title	Theory	Practical/ Seminar	Tutorial/ SDA	CIE	SEE	Total	Credits
				L	P	T/SDA				
1.	IPCC	P24MECE11	System Verilog	3	2	0	50	50	100	4
2.	PCC	P24MECE12	Advanced Machine Learning and Deep Learning	3	0	0	50	50	100	3
3.	PCC	P24MECE13	Digital Circuits and Logic Design	3	0	0	50	50	100	3
4.	PEC	P24MECE14X	Professional Elective I	3	0	0	50	50	100	3
5.	PEC	P24MECE15X	Professional Elective II	3	0	0	50	50	100	3
6.	PCL	P24MECEL16	VLSI Design Lab	0	1	1	50	50	100	2
7.	NCMC	P24MRMI17	Research Methodology and IPR(Online)		Online	courses(on)	line.vt	u.ac.ir	ı)	PP
Tota	al						300	300	600	18

Note: PCC: Professional Core Course | IPCC-Integrated Professional Core Courses |PEC- Professional Elective Course| NCMC-Non Credit Mandatory Course | PECL -**Professional Elective Lab**

	Professional	Elective - I	Professional Elective - II			
Sl. No	Course Code	Course Title	Sl. No	Course Code	Course Title	
1.	P24MECE141	ASIC Design	1.	P24MECE151	Advance Embedded Systems	
2.	P24MECE142	Advanced Computer Networking	2.	P24MECE152	Advanced Wireless Communication	
3.	P24MECE143	Advanced Signal Processing	3.	P24MECE153	Multimedia and Applications	
4.	P24MECE144	Power Converters	4.	P24MECE154	Process Control	

			I)	I – Semeste	er					
GI.				Teac	Teaching Hours/Week			Examination Marks		
Sl. No.	Course Type	Course Code	Course Title	Theory	Practical/ Seminar	Tutorial/ SDA	CIE	SEE	Total	Credits
				L	P	T/SDA				
1.	IPCC	P24MECE21	Design of Analog and Mixed Mode VLSI Circuits	3	2	0	50	50	100	4
2.	PCC	P24MECE22	VLSI Testing & Verification	3	0	0	50	50	100	3
3.	PCC	P24MECE23	ARMCortex- M3andM4Processors	3	0	0	50	50	100	3
4.	PCC		Real time operating Systems	3	0	0	50	50	100	3
5.	PEC	P24MECE25X	Professional Elective III	3	0	0	50	50	100	3
7.	PEC	P24MECE26X	Professional Elective IV	3	0	0	50	50	100	3
8.	PCL	P24MECML27	VLSI Design & Embedded Systems Lab	0	1	1	50	50	100	2
9	AEC/SE C	P24MECEL28	Ability/Skill Enhancement Course (Offline/Online)	1	-	-	50	50	100	1
		Total					400	400	800	22

${\bf Note:\ PCC:\ Professional\ Core\ Course\ |\ IPCC-Integrated\ Professional\ Core\ Courses}$ |PEC- Professional Elective Course| NCMC-Non Credit Mandatory Course | PECL -**Professional Elective Lab**

	Professional	Elective - III	Professional Elective - II			
Sl. No	Course Code	Course Title	Sl. No	Course Code	Course Title	
1.	P24MECE251	FinFETs and Other Multi-Gate Transistors	1.	P24MECE261	Reconfigurable Computing	
2.	P24MECE252	Hardware Security	2.	P24MECE262	Long Term Reliability of VLSI Systems	
3.	P24MECE253	Static Timing Analysis	3.	P24MECE263	Low Power VLSI Design	
4.	P24MECE254	Embedded Linux System Design and Development Processing	4.	P24MECE264	RISC V	

			II	I – Semeste	er					
CI			Teacl	Teaching Hours/Week			Examination Marks			
No.	Course Type	Course Code	Course Title	Theory	Practical/ Seminar	Tutorial/ SDA	CIE	SEE	Total	Credit s
				L	P	T/SDA				
1.	PEC	P24MECE31X	(Online Courses)12weeksdur ation				100		100	3
2.			(Online Courses)12weeksdur ation				100		100	3
3.			(Online Courses)12weeksdur ation				100		100	3
4.	INT		Research Internship/ Industry-Internship leading to project work/ Start up				100		100	3
	Total					400		400	12	

	III – Semester									
CI			Teacl	Teaching Hours/Week			Examination Marks			
Sl. No.	Course Type	Course Code	Course Title	Theory	Practical/ Seminar	Tutorial/ SDA	CIE	SEE	Total	Credit s
				L	P	T/SDA				
1.	INT	12111120211	Research Internship/ Industry Internship Leading to Project Work/Start-up				100	100	100	12
2.	PROJ	P24MECE42	Project				100	100	100	16
	Total						200	200	400	28

PART-A						
Academic Year: 2024-25	Sen	nester: I	Scheme: P24			
Course Title: SYSTEM VER	ILOG					
Course Code: P24MECE11		CIE Marks: 50	CIE Weightage: 50%			
Teaching hours/week (L:T:P)	3:0:2	SEE Marks:100	SEE Weightage:50%			
Teaching hours of Pedagogy:	40	Exam Hours: 3				
Credits:04						
Prerequisite:						
Digital Logic Design, Verilog, VLSI Testing and Verification						
Course learning Objectives:						
CLO1 II 1 4 1D' '4 10	4 17	·C II . O1 .	0 ' 4 13/4 / 1			

CLO1:Understand Digital System Verification Using Object Oriented Methods

CLO2: Learn the System Verilog Language for Digital System Verification.

CLO3: Create/Build Test Benches for the Design/Methodology.

CLO4: Use Constrained Random Tests for Verification

CLO5: Understand Concepts of Functional Coverage

UNIT -1 8 Hours

Verification Guidelines: The Verification Process, Basic Test Bench Functionality, Directed Testing, Methodology Basics, Constrained Random Stimulus, Randomization, Functional Coverage, Test Bench Components, Layered Test Bench.

Data Types: Built-In Data Types, Fixed and Dynamic Arrays, Queues, Associative Arrays, Linked Lists, Array Methods, Choosing A Storage Type, Creating New Types With type def, Creating User Defined Structures, Type Conversion, Enumerated Types, Constants and Strings, Expression Width.

Self-Study Content: Analyse the Difference between Verilog and System Verilog Data types

Textbook Map: Chapter-1: 1.1,1.3-1.10 Chapter-2: 2.1-2.9, 2.11,2.13-2.16

Teaching Learning Process: PPT,

UNIT 2: 8 Hours

Procedural Statements and Routines: Procedural Statements, Tasks, Functions and Void Functions, Task and Function Overview, Routine Arguments, Returning from a Routine, Local Data Storage, Time Values.

Connecting the Test Bench and Design: Separating the Test Bench and Design, The Interface Construct, Stimulus Timing, Interface Driving and Sampling, System Verilog

Self-Study Content: Develop a System Verilog Code for Conditional Circuits using **Procedural Statements**

Textbook Map: Chapter-3:3.1-3.7 Chapter 4: 4.1-4.4, 4.9

Teaching Learning Process: PPT

UNIT 3: 8 Hours

Randomization: Introduction, Randomization in System Verilog, Constraint Details, Solution Probabilities, Valid Constraints, In Line Constraints, Random Number Functions, Common Randomization Problems, Random Control, Random Number Generators.

Self-Study Content: Understand the basic OOPs Concepts

Textbook Map: Chapter-6.1,6.3-6.8,6.10,6.12,6.15,6.16

Teaching Learning Process: PPT

UNIT 4: 8 Hours

Threads and Inter process Communication: Working with Threads, Disabling Threads, Inter Process Communication, Events, Semaphores, Mailboxes, Building A Test Bench with Threads and Inter Process Communication.

Self-Study Content: Analyse the usage of Inheritance in System Verilog

Textbook Map: Chapter-7

Teaching Learning Process: PPT

UNIT 5: 8 Hours

Functional Coverage: Coverage Types, Functional Coverage Strategies, Simple Functional Coverage Example, Anatomy of Cover Group, Triggering a Cover Group, Data Sampling, Cross Coverage, Generic Cover Groups, Coverage Options, Analyzing Coverage Data, Measuring Coverage Statistics During Simulation.

Self-Study Content: Case study of ALU for Functional Coverage

Teaching Learning Process: PPT

Textbook Map: Chapter-9

Course Outcomes: At the end of the course students should be able to :

CO1: Apply the System Verilog concepts to verify the design.

CO2: Apply constrained random tests benches using System Verilog.

CO3: Appreciate Functional Coverage

Suggested Learning Resources:

Textbooks:

	T		77 0	5.111.1
1.	Title	Author	Year &	Publisher
			Edition	
1	System Verilog for	ChrisSpear	Second	Springer Publications
	Verification—A guide		Edition, 2010	
	to learning the			
	Testbench language			
	features			
2	System Verilog for	Stuart Sutherland,	Second	Springer Publications
	Design-A guide to	Simon Davidmann,	Edition, 2006	
	using system	Peter Flake		
	Verilog for Hardware			
	design and modelling			
Refer	ence Books:			
1.	System Verilog	Stuart Sutherland	2nd edition,	Springer
	for Design		2006	Publications
2.	System Verilog	Vijaya Raghavan	2014	Springer
	Assertions			Publications

Web links and Video Lectures (e-resources)

1.https://www.youtube.com/watch?v=N9cdUhdNrgg&list=PLqPfWwayuBvOL920Q8ljlVm UMHshb5lJE

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Flip Class
- 2. Seminar/poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

	PART-B				
Academic year:2024-25	Semester: I	Scheme:P2	24		
Course Title: SYSTEM VERILOG					
Course Code: P24MECE11	CIE Marks: 50	CIE Weigl	ntage: 50		
Teaching hours/week (L:T:P)3:0:2	SEE Marks:100	SEE Weig	htage:50		
Teaching hours of Pedagogy:40	Exam Hours: 3				
Credits: 04					
Name of the Course Coordinator: [t	e course]				
Course Outcomes:		Expected	Program		
		Bloom's Level	Outcomes		
CO1: Apply the System Verilog conc	epts to verify the	L2, L3	PO1, PO3, PO4,		
design.			PO5		
CO2: Apply constrained random tests	L3,L4	PO1, PO4, PO5			
System Verilog.					
CO3: Appreciate Functional Coverage		L2,L3	PO1,PO4		

COURSE ARTICUALTION MATRIX							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2
CO1	3		1	1	2	3	
CO2	2			1	2	2	
CO3	2			1		2	

	PRACTICAL COMPONENT OF IPCC						
	Using simulation software Vivado						
1.	Develop a System Verilog code to simulate and verify the operation of a tri state buffer.						
2.	Using function facilities of SystemVerilog develop a code forgiven arithmetic/logical operation and verify its operation through its test bench simulation.						
3.	Using task facility of System Verilog develop a code to synthesize given logical functionality, verify its operation through test bench and also comment on synthesizability with respect to return type.						
4.	Using class data types in System Verilog develop a code for control register with given specifications and simulate its operation.						
5.	Develop a System Verilog code to illustrate the concept of threads and fork.						
6.	Develop a System Verilog code to create semaphores for controlling the register access.						
7.	Using randomization facility in System Verilog develop a test bench to verify the operation of a given logic design.						
8.	Using Enumerated type facility in System Verilog develop a code to simulate the operation of a traffic control state machine.						

PART-A							
Academic Year: 2024-25	Semester: I	Scheme: P24					
Course Title: ADVANCED MACHIN	NE LEARNING AND I	DEEP LEARNING					
Course Code: P24MECE12	CIE Marks:50	CIE Weightage: 50%					
Teaching hours/week (L:T:P): 3:0:0	SEE Marks:100	SEE Weightage: 50%					
Teaching hours of Pedagogy: 40 hrs	Exam Hours: 03(Theory)						
Credits: 03							

Prerequisite:

Basic operating understanding of calculus, matrices and Python programming. And provide extensive mathematical background, in linear algebra may also be helpful in navigating certain sections of mathematical exposition. Knowledge of neural network architecture and design.

Course Learning Objectives:

CLO1: To understand the fundamental concepts of machine learning and its applications.

CLO2: To master the concepts of classification and clustering techniques.

CLO3: To develop a deep understanding of convolutional neural networks (CNNs) and their architecture.

CLO4: To apply deep learning techniques to large-scaled at a sets and real-world problems.

UNIT-1 8 Hours

The Neural Network: Building Intelligent Machines, Limits of Traditional Computer Programs, Mechanics of Machine Learning, Neuron, Expressing Linear Perceptron's as Neurons, Feed-Forward Neural Networks, Linear Neurons and Their Limitations, Sigmoid, Tanh, and ReLU Neurons, Soft max Output Layers.

Training Feed-Forward Neural Networks: Fast-Food Problem, Gradient Descent, Delta Rule and Learning Rates, Gradient Descent with Sigmoidal Neurons, Back propagation Algorithm, Stochastic and Mini batch Gradient Descent, Test Sets, Validation Sets, and Over fitting, Preventing Over fitting in Deep Neural Networks.

RBT Levels: L2, L3

Self-Study Content: 1. Study the basic intuition for machine learning.

2. Discuss the basic structure of a neuron, how feed-forward neural networks works.

Textbook 1 Map: 1.1 to 1.10 and 2.1 to 2.8

Teaching Learning Process: Power point presentation with demonstration (MAT LAB or Python) or any violable tool.

> **UNIT 2:** 8 Hours

Beyond Gradient Descent: Challenges with Gradient Descent, Local Minima in the Error Surfaces of Deep Networks, Model Identifiability, Flat Regions in the Error Surface, When the Gradient Points in the Wrong Direction, Momentum-Based Optimization, Brief View of Second-Order Methods, Learning Rate Adaptation, AdaGrad—Accumulating Historical Gradients, RMSProp—Exponentially Weighted Moving Average of Gradients, Adam-Combining Momentum and RMSProp, Philosophy Behind Optimizer Selection.

RBT Levels: L3

Self-Study Content: 1. Identify the challenges that arise when trying to train deep networks with complex error surfaces.

2.Understand how momentum can be used to overcome ill-conditioning.

Textbook 1 Map: 4.1 to 1.10

Teaching Learning Process: Power point presentation with demonstration (MAT LAB or Python) or any violable tool.

UNIT 3:

8 Hours

Convolutional Neural Networks: The operation, Pooling, Convolution and Pooling as an infinitely strong prior, Variants of the basic functions, efficient algorithms, Random or Unsupervised Features, Neuro scientific Basis for Convolutional Networks.

RBT Levels: L3

Self-Study Content: 1. Identify the applications of convolution neural networks.

2. Develop a python code for Efficient Convolution Algorithms.

Textbook 2 Map:9.1 to 9.5, 9.8 to 9.10

Teaching Learning Process: Power point presentation with case studies and/or demonstration (MAT LAB or Python) or any violable tool.

8 Hours

Neural Networks: RNN, Bidirectional RNN, Encoder-Decoder Sequence to sequence architecture, Deep recurrent Networks, Recursive Neural Networks, The Long Short Term Memory and other Gated Optimization for Long Term Dependencies.

RBT Levels: L3

Self-Study Content: 1.Understand the concept of multi-layer networks of Recurrent Neural Networks.

> 2. Identify the different Long Short Term Memory and other Gated RNNs.

Textbook 2 Map: 10.2 to 10.6, 10.10 to 10.11

Teaching Learning Process: Power point presentation and guest lecture.

UNIT 5:

8 Hours

Applications: Large-Scale Deep Learning, Computer Vision, Speech Recognition, Natural Language Processing, Other Applications.

RBT Levels: L3,L4

Self-Study Content: 1. Discuss how to use deep learning to solve applications in computer vision, speech recognition, natural language processing, and other application areas of commercial interest

Textbook 2 Map: 12.1 to 12.5

Teaching Learning Process: Power point presentation and seminar.

Course Outcomes: At the end of the course students should be able to:

CO1: **Illustrate** the principles and mechanism of working of neural networks.

CO2: Analyze the effectiveness of neural networks and their architectures in solving a problems.

CO3: **Develop** a neural network/machine learning model to solve given problem.

Suggested Learning Resources:

Textbooks:

1.	Title	Author	Year & Edition	Publisher
1	Fundamentals of	Nikhil Budama	2017, 1 st Edition	O'Reilly Media, Inc, USA
	Deep Learning			ISBN-10 9781491925614
				ISBN-13978-1491925614
2	Deep Learning	Goodfellow,	2018	The MIT Press,2016,800
		Bengio and		pp,ISBN:0262035618
		Courville		
Re	ference Books:			
1.	Neural Networks	CharuAggarwal	2018	
	and Deep Learning			
2.	Hands-on Deep	Sudharsan,	2019	

L5

PO3

Learning	Ravichandran	
Algorithms with		
Python		

Web links and Video Lectures (e-resources)

1. https://nptel.ac.in/

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Flip Class
- 2. Seminar/ poster Presentation

their architectures in solving problems.

to solve given problem.

CO3: Develop a neural network/machine learning model

- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

Academic year:2024-25	Semester: I	Scheme:P24	
Course Title: ADVANCED MACHIN	NE LEARNING AN	D DEEP LEARNI	NG
Course Code: P24MECE12	CIE Marks:50	CIE Weightag	ge: 50%
Teaching hours/week (L:T:P): 3:0:0	SEE Marks:100	SEE Weightag	ge: 50%
Teaching hours of Pedagogy: 40 hrs	Exam Hours: 03(Th	neory)	
Credits: 03			
Course Outcomes	S	Expected	Program
		Bloom's Level	Outcomes
CO1: Illustrate the principles and mechanism of		L2	PO1
working of neural networks.			
CO2: Analyze the effectiveness of ne	L3	PO2	

PART-B

COURSE ARTICUALTION MATRIX							
	PO1 PO2 PO3 PO4 PO5 PSO1 PSO2						PSO2
CO1	3					3	
CO2		2					2
CO3			2				

PART-A				
Academic Year: 2024-25	Semester: I	Scheme: P24		
Course Title: DIGITAL CIRCUITS AND LOGIC DESIGN				
Course Code: P24MECE13	CIE Marks:50	CIE Weightage:50%		
Teaching hours/week (L:T:P:): 3:0:0	SEE Marks:100	SEE Weightage:50%		
Teaching hours of Pedagogy:40	Exam Hours: 03			

Credits:03

Prerequisite:

Electric Circuits, Microelectronics, Digital Systems.

Course learning Objectives:

CLO1: Understand the concepts of sequential machines.

CLO2: Apply fault detection experiments to sequential circuits.

CLO3: Analyze the faults in the design of circuits.

CLO4: Design Sequential Machines/Circuits

UNIT -1

8 Hours

Threshold Logic: Introductory Concepts, Synthesis of Threshold Networks

Capabilities, Minimization, and Transformation of Sequential Machines: The Finite-

State Model, Further Definitions, Capabilities

Self-Study Content: State equivalence and machine minimization

Textbook Map 1: 7.1,7.2 10.1,10.2

Teaching Learning Process: Poster presentation/Quiz/Seminar/Team demonstration

UNIT 2:

Testing of Combinational Circuits: Fault models, Structural testing, I_{DDO} testing, Delay fault testing, Synthesis for testing, Testing for nanotechnologies.

Self-Study Content: Fault Diagnosis of Digital Circuits

Textbook Map 1: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6

Teaching Learning Process: Flip class/Quiz/Seminar/Team demonstration

UNIT 3:

8 Hours

Introduction to Synchronous Sequential circuits and iterative networks: Sequential circuits-introductory example, The finite- state model-basic definitions, Memory elements and their excitation functions, Synthesis of synchronous sequential circuits, An example of a computing machine

Self-Study Content: Iterative Networks

Textbook Map 1: 9.1, 9.2, 9.3, 9.4, 9.5

Teaching Learning Process: Quiz/Seminar/Team demonstration/One minute paper writing

UNIT 4:

Structure of Sequential Machines: Introductory Example, State Assignments Using Partitions, The Lattice of closed Partitions, Reductions of the Output Dependency, Input Independence and Autonomous Clocks, Covers and Generation of closed Partitions by state splitting, Information Flow in Sequential Machines, decompositions, Synthesis of Multiple Machines.

Self-Study Content: Built-in self-test (BIST)

Textbook Map 1: 12.1,12.2,12.3,12.4,12.5,12.6,12.7,12.8,12.9

Teaching Learning Process: One minute paper writing/ Quiz/Seminar/Team demonstration

UNIT 5:

8 Hours

Faults in Digital Circuits: Failures and faults, Modelling of faults, Stuck-At-Faults, Bridging faults, Breaks and Transistor Stuck-On/-Open faults in CMOS, Delay faults.

Test Generation for Sequential Circuits: Testing of Sequential Circuits as Iterative

Combinational Circuits, State Table Verification, Test Generation Based on Circuit Structure, **Functional Fault Models**

Self-Study Content: Test Generation Based on Functional Fault Models

Teaching Learning Process: Think pair share/One minute paper writing/ Quiz/Seminar

Textbook Map 2: 1.1, 1.2, 1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.3, 4.1, 4.2, 4.3, 4.4.

Course Outcomes: At the end of the course students should be able to:

CO1:Apply electronics circuit knowledge to understand digital circuits.

CO2: Analyze digital circuits for faults using various methods.

CO3: Design the fault detection circuit for synchronous sequential circuits.

CO4:Simulate fault models with available tools.

Suggested Learning Resources:

Toythooks

1 e	xtbooks:			
1.	Title	Author	Year & Edition	Publisher
1	'Switching and Finite	ZviKohavi		ISBN:978_0_07_099387_7
	Automata Theory'			2ndEdition ,2008.
2	'Digital Circuit	Parag K Lala		Academic Press
	Testing and			
	Testability'			
Re	ference Books:			
1.	Digital Circuits and	Parag K Lala	PrenticeHallInc.1	
	logic Design', Charles		985.	
	RothJr			
2.	'Introductory Theory	E.V.Krishnamu	1983	Macmillan PressLtd
	of Computer'	rthy		
3	Fault Tolerant and	Parag K Lala	1985.	Prentice HallInc.
	Fault Testable			
	Hardware Design'			
4	Theory of computer	Mishra &	2ndEdition, PHI,	
	science-Automata,	Chandrasekara	2004.	
	Languages and	n,		

Web links and Video Lectures (e-resources)

1. https://nptel.ac.in/

Computation

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

	PART-B		
A 1 2024 25	C -1 DO 4		
Academic year:2024-25	Semester: I	Scheme:P24	
Course Title: DIGITAL CIRCUITS A	AND LOGIC DESIG	SN	
Course Code: P24MECE13	CIE Marks:50	CIE Weightage:5	0%
Teaching hours/week (L:T:P:): 3:0:0	SEE Marks:100	SEE Weightage:	50%
Teaching hours of Pedagogy:40	Exam Hours: 03(T	heory)	
Credits: 03			
Name of the Course Coordinator: [te	eam designing the c	ourse]	
Course Outcomes		Expected	Program
Course Outcomes		Expected Bloom's Level	Program Outcomes
	it to understand the	-	_
Course Outcomes CO1: Apply knowledge of electronics circu concepts of digital circuits.	it to understand the	Bloom's Level	Outcomes
CO1: Apply knowledge of electronics circu concepts of digital circuits.		Bloom's Level	Outcomes
CO1: Apply knowledge of electronics circu		Bloom's Level L1	Outcomes PO1
CO1: Apply knowledge of electronics circulated concepts of digital circuits. CO2: Analyse the faults in the digital of various methods.	circuits using	Bloom's Level L1 L2	Outcomes PO1 PO2
CO1: Apply knowledge of electronics circular concepts of digital circuits. CO2: Analyse the faults in the digital ovarious methods. CO3: Design the fault detection circuit	circuits using	Bloom's Level L1	Outcomes PO1
CO1: Apply knowledge of electronics circulated concepts of digital circuits. CO2: Analyse the faults in the digital of various methods.	circuits using to for synchronous	Bloom's Level L1 L2	Outcomes PO1 PO2

COURSE ARTICUALTION MATRIX							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2
CO1	3					3	
CO2		3					3
CO3		2					2
CO4			2				

PROFESSIONAL ELECTIVE I						
PART A						
Academic Year: 2024-25	Semester: I	Scheme: P24				
Course Title: ASIC DESIGN	Course Title: ASIC DESIGN					
Course Code: P24MECE141	CIE Marks:50	CIE Weightage:50%				
Teaching hours/week (L:T:P): 3:0:0 SEE Marks:100 SEE Weightage:50%						
Teaching hours of Pedagogy: 40 Exam Hours: 3Hrs						
Credits: 03	•					

Prerequisite:

- Basic Semiconductor Concepts.
- Digital Logic Design.
- HDL (Hardware Description Language).
- EDA Tools (Electronic Design Automation).
- Simulation and Verification.

Course learning Objectives:

CLO1: To learn ASIC methodologies and programmable logic cells to implement a function on IC.

CLO2: To analyze back-end physical design flow, including partitioning, floor-planning, placement, and routing.

CLO3: To Gain sufficient theoretical knowledge for carrying out FPGA and ASIC designs

UNIT-1

8 Hours

Introduction to ASICs: Full custom, Semi-custom and Programmable ASICs, ASIC Design flow, ASIC cell libraries. CMOS Logic: Data path Logic Cells: Data Path Elements, Adders: Carry skip, Carry bypass, Carry save, Carry select, Conditional sum, Multiplier (Booth encoding), Data path Operators, I/O cells, Cell Compilers.

Self-Study Content: Case Study, Carry out the survey on ASIC ICs which are used in industries.

Textbook Map: Text 1: 1.1.1,1.1.2,1.1.7, 1.2,1.5,2.6(2.6.1,2.6.2,6.2.3,2.6.4,2.6.6),2.8.

Teaching Learning Process: Flip Class

UNIT 2:

8 Hours

ASIC Library Design: Logical effort: Predicting Delay, Logical area and logical efficiency, Logical paths, Multi-stage cells, Optimum delay and number of stages, library cell design. Programmable ASIC Logic Cells: MUX as Boolean function generators, ActedACT:ACT1, ACT2 and ACT3 Logic Modules, Xilinx LCA: XC3000 CLB, Altera FLEX and MAX, Programmable ASIC I/O Cells: Xilinx and Altera I/OBlock.

Self-Study Content: Other Data path Operators, Library Architecture, Gate array Design.

Textbook Map:3.3,3.4,5.1(5.1.3,5.1.4),5.2.1,5.3,5.4,6.7

Teaching Learning Process: Seminar

UNIT 3:

8 Hours

Low-level design entry: Schematic entry: Hierarchical design, The cell library, Names, Schematic Icons & Symbols, Nets, Schematic Entry for ASICs, Connections, vectored instances & buses, Edit in place, attributes, Netlist screener.

ASIC Construction: Physical Design, CAD Tools, System partitioning, Estimating ASIC size. Partitioning: Goals and objectives, Constructive Partitioning, Iterative Partitioning Improvement, KL, FM and Look Ahead algorithms.

Self-Study Content: Schematic –Entry tools and Back annotation.

Textbook Map: Text 1: 9.1(9.1.1 to 9.1.11), 15.1,15.2,15.3,15.4,15.7 (15.7.1,15.7.3,15.7.4, 15.7.5,15.7.7)

Teaching Learning Process: Seminar

UNIT 4:

8 Hours

Floor planning and placement: Goals and objectives, Measurement of delay in Floor planning, Floor planning tools, Channel definition, I/O and Power planning and Clock planning.

Placement: Goals and Objectives, Min-cut Placement algorithm, Iterative Placement Improvement, Time driven placement methods, Physical Design Flow.

Self-Study Content: Introduction to Synthesis and Simulation.

Textbook Map: Text 1: 16.1,16.2.2,16.2.16.2.4,16.2.6,16.2.8,16.3

Teaching Learning Process: Paper Presentation

UNIT 5:

8 Hours

Routing: Global Routing - Goals and objectives, Global Routing Methods, Global routing between blocks, Back-annotation. Detailed Routing - Goals and objectives, Measurement of Channel Density, Left-Edge Algorithm, Area-Routing Algorithms, Multilevel routing, Timing –Driven detailed routing, Final routing steps, Special Routing, Circuit extraction and DRC.

Self-Study Content: Partitioning methods, Global Routing, Detail Routing, Special Routing. Textbook Map: Text1: 17.1(17.1.1,17.1.3,17.1.4,17.1.7), 17.2(17.2.1,17.2.2,17.2.4, 17.2.6, 17.2.7, 17.2.8,17.2.9)17.3,17.4

Teaching Learning Process: Paper Presentation

Course Outcomes: At the end of the course students should be able to:

- CO1: Describe the concepts of ASIC design methodology, data path elements, logical effort.
- CO2: Analyze the design of ASICs suitable for specific tasks, perform design entry and Explain the physical design flow.
- CO3: Design data path elements for ASIC cell libraries and compute optimum path delay.
- CO4:Create floor plan including partition and routing with the use of CAD algorithms

Suggested Learning Resources:

Text	books:					
1.	Title	Author	Year & Edition	Publisher		
1	"Application - Specific	M.J.S .Smith	1 st Edition,	Pearson		
	Integrated Circuits"		2003.ISBN-	Education		
			13: 978-			
			8177584080.			
Refe	Reference Books:					
1.	"CMOS VLSI Design: A	Neil H.E. Weste,	3 rd edition, 2011	Addison Wesley/		
	Circuits and Systems	David Harris, and		Pearson		
	Perspective"	Ayan Banerjee		education		
2.	"VLSI Design: A	Vikram Arkalgud	ISBN: 978-1-	Springer		
	Practical Guide for	Chandrasetty	4614-1119-			
	FPGA and ASIC		2.2011			
	Implementations"					
3.	"An ASIC Low Power	RakeshChadha,Bha	ISBN:978-	Springer		
	Primer"	skerJ,	14614-4270-7.			
4.	"Digital Design	PeterJ.Ashenden	1 st Edition	Kindle Edition		
	(Verilog):An Embedded					
	Systems Approach Using					
	Verilog"					

Web links and Video Lectures (e-resources)

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

PART-B				
Academic year:2024-25	Semester: I	Scheme:P24		
Course Title: ASIC DESIGN				
Course Code: P24MECE141	CIE Marks:50	CIE Weightage:50%		
Teaching hours/week (L:T:P): 3 : 0 : 0	SEE Marks:100	SEE Weightage:50%		
Teaching hours of Pedagogy: 40 Exam Hours: 3Hrs				
Credits: 03				

Name of the Course Coordinator: [team designing the course]

Course Outcomes	Expected	Program
	Bloom's Level	Outcomes
CO1: Describe the concepts of ASIC design methodology,	L1	PO1
data path elements, logical effort.		
CO2: Analyze the design of ASICs suitable for specific	L2	PO2,PO3
tasks, perform design entry and Explain the physical design		
flow.		
CO3: Design data path elements for ASIC cell libraries	L5	PO3
and compute optimum path delay.		
CO4: Create floor plan including partition and routing	L5	PO4
with the use of CAD algorithms.		
CO5: Design CAD algorithms and explain how these	L5	PO3,PO4
algorithms interact in ASIC design.		

COURSE ARTICUALTION MATRIX							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2
CO1	2					2	
CO2		2	2				2
CO3			3				
CO4				3			
CO5			2	2			

8 Hours

PROFESSIONAL ELECTIVE 1						
PART-A						
Academic Year: 2024-25	Semester: I	Scheme: P24				
Course Title: ADVANCED COMPUTER NETWORKING						
Course Code: P24MECE142	CIE Marks:50	CIE Weightage:50%				
Teaching hours/week (L:T:P) 3:0:0	SEE Marks:100	SEE Weightage:50%				
Teaching hours of Pedagogy: 40	Exam Hours: 3					
Credits: 03	•					

Prerequisite:

A secure Internet connection from the Internet Service Provider (ISP), A router with a highspeed Internet connection, A modem, Firewall capabilities, One or more switches (allows computers to link to one another over an internal network), Phone line/cable/fiber optic linking (wired or wireless)

Course learning Objectives:

CLO1: This course focuses on advanced networking concepts for next generation network architecture and design

CLO2:It covers SDN and virtualization for designing next generation networks

UNIT -1

MEDIUM ACCESS CONTROL SUB LAYER: Wireless LANs, Broadband Wireless, Bluetooth, RFID.

THE NETWORK LAYER: Network Layer Design Issues, Congestion Control Algorithms, Quality of Service, The Network Layer in the Internet.

Self-Study Content: Technical terminology used in Computer Networking and Internet working.

Textbook Map: (Text Book 1: 4.4, 4.5, 4.6, 4.7, 5.1, 5.3, 5.4, 5.6.3 to 5.6.9)

(RBT Levels: L1 & L2)

Teaching Learning Process: Flip Class

UNIT 2: 8 Hours

THE APPLICATION LAYER: The Domain Name System, Electronic Mail, The World Wide Web.

Self-Study Content: Recent concepts of Application Layer

Textbook Map:(Text Book 1: 7.1, 7.2, 7.3) (RBT Levels: L1 & L2)

Teaching Learning Process: Seminar/ poster Presentation

UNIT 3: 8 Hours

SOFTWARE DEFINED NETWORK (SDN): Evolution of Switches and Control Planes, Cost, SDN Implications for Research and Innovation

GENESIS OF SDN: The Evolution of Networking Technology, Forerunners of SDN, Software

Defined Networking is Born, Sustaining SDN Interoperability, Open Source Contributions, **Network Virtualization**

HOW SDN WORKS: Fundamental Characteristics of SDN, SDN Operation, SDN Devices, **SDN**

Controller, SDN Applications, Alternate SDN Methods

Self-Study Content: Important components of SDN controllers

Textbook Map: (Text Book 2: 2.1, 2.2, 2.3, 3.1, 3.2, 3.4, 3.5, 3.6, 3.7, 4.1 to 4.6) (RBT Levels: L1 & L2)

Teaching Learning Process: Individual Role play/Team Demonstration/ Collaborative Activity

UNIT 4: 8 Hours

THE OPENFLOW SPECIFICATION: Open Flow Overview, Open Flow 1.0 and Open Flow Basics, Open Flow Additions - 1.1, 1.2, 1.3, 1.4, 1.5, Improving Open Flow Interoperability, Optical Transport Protocol Extensions, Open Flow Limitations

Self-Study Content: Differentiate between SDN and open flow

Textbook Map:(Text Book: 2 Chapter 5) (RBT Levels: L1& L2)

Teaching Learning Process: Case study

UNIT 5: 8 Hours

NETWORK FUNCTIONS VIRTUALIZATION: Definition of NFV, Virtualize, Standards, OPNFV.

Leading NFV Vendors, SDN Vs NFV, In-Line Network Functions.

SDN OPEN SOURCE: SDN Open Source Landscape, The OpenFlow Open Source Environment, Profiles of SDN Open Source Users, OpenFlow Source Code, Switch Implementations, Controller Implementations, SDN Applications, Orchestration and Network Virtualization, Simulation, Testing and Tools, Open Source Cloud Software, Example: Applying SDN Open Source.

Self-Study Content: Recent updates & study on physical components of Computer network

Teaching Learning Process: Learn by Doing

Textbook Map: (Text Book 2: 10.1-10.7 & 13.1, 13.2, 13.5 - 13.13) (RBT Levels: L1 & L2)

Course Outcomes: At the end of the course students should be able to :

CO1: Understand advanced concepts and next generation networks.

CO2: Analyze network Algorithm's, Protocols and their functionalities.

CO3: Comprehend features of SDN and its application to next generation

Systems

Suggested Learning Resources:

Textbooks:

1.	Title	Author	Year & Edition	Publisher
1	Computer Network	Andrew S.	5th Edition	Pearson
		Tanenbaum,		Education
		David J.		
		Wetherall		
2	Software Defined	Paul Goransson,	2nd Edition,	Morgan Kaufmann
	Networks – A	Chuck Black and	2017	
	Comprehensive	Timothy Culver		
	Approach			
Refe	erence Books:			

1.	Data Communications	Behrouz A.	Fourth	Tata McGraw
	and Networking	Forouzan	Edition,2007	Hill
2.	Computer Networking-	James F	7th Edition,	Pearson Education
	A Top down Approach	Kurose, Keith	2017	
	Featuring the	W Ross		
	Internet			

Web links and Video Lectures (e-resources)

https://onlinecourses.nptel.ac.in>noc23_cs35

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study

L2

L3

PO1,PO2,PO3,P

O4,PO5

PO1,PO2,PO3,P

O5

5. Learn by Doing

functionalities.

next generation systems

PART-B					
Academic year: 2024-25	Semester: I Scheme: P24				
Course Title: ADVANCED COMPUTER NETWORKING					
Course Code: P24MECE142 CIE marks: 50 CIE Weightage: 50%					
Teaching hours/weeks (L:T:P) 3:0:0	SEE Marks:100 SEE Weightage:50%				
Teaching hours of Pedagogy 40 hrs	Exam hours: 3				
Credits: 03					
Name of the Course Coordinator: [tea	m designing the c	ourse]			
Course Outcomes		Expected	Program		
		Bloom's Level	Outcomes		
CO1: Understand advanced concepts an networks.	d next generation	L1	PO1,PO2,PO4		

CO2: Analyze network Algorithm's, Protocols and their

CO3:Comprehend features of SDN and its application to

COURSE ARTICUALTION MATRIX							
PO1 PO2 PO3 PO4 PO5 PSO1 PSO2							
CO1	3	2		2		3	2
CO2	3	3	2	3	2	3	3
CO3	2	2	2		2	2	2

PROFESSIONAL ELECTIVE 1						
PART-A						
Academic Year: 2024-25	Semester: I	Scheme: P24				
Course Title: ADVANCED SIGNAL PROCESSING						
Course Code: P24MECE143	CIE Marks: 50	CIE Weightage: 50%				
Teaching hours/week (L:T:P) 3:0:0	SEE Marks:100	SEE Weightage: 50%				
Teaching hours of Pedagogy:40 Exam Hours: 3 hrs						
Credite:03						

Credits:03

Prerequisite:

Signals & Systems, Digital Signal Processing.

Course learning Objectives:

CLO1: Explore & understand algorithms & techniques of Signal processing in context real time applications.

CLO2: Learn analysing discrete time signals &systems.

CLO3: Design Sub-blocks of signal processing systems.

CLO4: Apply the knowledge of signals & algorithms in developing signal processing blocks.

UNIT-1 8 Hours

Analysis of Discrete Time Signals: Basic elements of a DSP System -Review of Sampling and Quantisation – Sampling theorem for low pass and band pass signals, uniform and non-uniform quantization, Application of quantisation in lossy compression of signals - Lloyd Max quantizer; Fourier analysis of Continuous and Discrete time signals -Fourier Fourier transform. Review of series and Discrete Time Fourier Transform(DTFT), Discrete Fourier Transform (DFT), Interpretation of DFT Spectrum, Review of DFT properties -Convolution and correlation, Convolution of long sequences, Leakage effect, Windowing – Introduction to other transforms: Discrete Cosine Transform (DCT), Walsh Hadamard Transform (WHT), Karhunen Loeve Transform (KLT) -Applications.

RBTLevels:L2,L3

Self-Study Content: Walsh Hadamard Transform (WHT)- Applications

Textbook Map: Text 1-2.1-2.13,3.1-3.7

Teaching Learning Process: power point presentation with demonstration(MATLAB Simulation)

UNIT 2:

Digital Filters and Implementation: Review of FIR and IIR filter design – Notch filter– Comb filter– All pass filters – Applications – Structures for digital filter realization: Signal flow graph and block diagram representations, FIR and IIR Filter structures, Lattice structures - Finite word length effects - Fixed-point and floating-point DSP arithmetic, Effects of quantization, Scaling, Limit cycles in fixed point realizations of IIR digital filters, Limit cycles due to overflow. Quantization effect in DFT and FFT computation.

RBTLevels:L3,L4

Self-Study Content: Quantization effect in DFT and FFT – Applications

Textbook Map: Text 1-4.1-4.11.

Teaching Learning Process: power point presentation with Case Studies.

UNIT 3: 8 Hours

Multirate Signals and Systems: Introduction to multirate signal processing with applications, Multirate System Fundamentals – Decimation and Interpolation, Transform domain analysis of Decimators and Interpolators, Decimation and Interpolation filters, Fractional sampling rate alteration, Practical sampling rate converter design.

RBTLevels:L3,L4

Self-Study Content: Decimation and Interpolation – Applications

Textbook Map: Text 2-2.1-2.8,3.1-3.7

Teaching Learning Process: power point presentation with guest lecturer.

UNIT 4:

8 Hours

Introductionto2-DSignalsandSystems: Polyphase decomposition and efficient structures – Introduction to digital filter banks – The DFT filter bank, Two Channel Quadrature Mirror Filter bank (QMF), Perfect Reconstruction.

Self-Study Content: DFT filter bank – Applications

Textbook Map: Text 3-1.1-1.8.

Teaching Learning Process: power point presentation with examples.

UNIT 5:

8 Hours

Introduction to2-D Signals and Systems: Elementary 2D signals—Linear shift Invariant systems-Separability - 2Dconvolution-Introductionto2Dtransforms:2DDFT,2DDCT, Applications.

RBTLevels:L3,L4

Self-Study Content: 2Dconvolution—Applications

Teaching Learning Process: power point presentation with examples.

Textbook Map: Text 3-2.1-2.8,3.1-3.3

Course Outcomes: At the end of the course students should be able to:

Suggested Learning Resources:

Textbooks:

1.	Title	Author	Year &	Publisher
			Edition	
1	Digital Signal Processing:	John G. Proakis,	2007,	Pearson India
	Principles, Algorithms and	Dimitris G.	4 th Edition	
	Applications,	Manolakis		
2	Multirate systems and filter banks	P.P.Vaidyanathan	1992,	Pearson
			2 nd Edition	Education
				India
	Two dimensional signal and image	LimJ.S	1990.	Prentice Hall
	processing			
Re	ference Books:			
1.	Digital Signal Processing: Theory	K Deergha	2018.	Springer
	and Practice	Rao,MNS Swamy		
2.	The Scientist and Engineer's Guide	StevenW.Smith	1999	California
	to Digital Signal Processing			
3.	Digital Signal Processing: A	MitraS.K	2013	McGraw-Hill
	Computer Based Approach			Publishing
				Company

Web links and Video Lectures (e-resources)

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Flip Class
- 2. Seminar/poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study

5. Learn by Doing

PART-B							
Academic year:2024-25	Semester:I		Scheme:P24				
Course Title: : ADVANCED SIGNAL PROCESSING							
Course Code: P24MECE143		CIE Marks: 50	CIE Weightage: 50%				
Teaching hours/week (L:T:P) 3:0:0		SEE Marks:100	SEE Weightage: 50%				
Teaching hours of Pedagogy:40	0	Exam Hours: 3 hrs					
Credits:03							

Name of the Course Coordinator: [team designing the course]

Course Outcomes	Expected Bloom's Level	Program Outcomes
CO1: Analyze the effect of sampling and quantisation of signals and appraise its relevance with reference to applications.	L2	PO1
CO2: Formulate various transform domain representations of 1D and 2D signals and demonstrate their applications with reference to practical signals.	L4	PO1
CO3: Examine finite word length effects in real time signal processing.	L2	PO3
CO4: Illustrate the effect of sampling rate converters and design distortion free digital filter banks illustrating their applications to process real life signals.	L2	PO3
CO5: Identification & design of DSP architectures for given requirements.	L5	PO2

COURSE ARTICUALTION MATRIX							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2
CO1	2					2	
CO2	2					2	
CO3			1				
CO4			1				
CO5		2					2

P24 M.Tech. Scheme of Teaching & Examination					
PROFES	SIONAL ELECTIVE 1				
	RT-A				
Academic Year: 2024-25	Semester: I	Scheme: I	224		
Course Title: POWER CONVERTERS		-			
Course Code: P24MECE144	CIE Marks:50	CIE Weig	htage:50%		
Teaching hours/week (L:T:P) 3:0:0	SEE Marks:100	SEE Weig	ghtage:50%		
Teaching hours of Pedagogy:40 Exam Hours: 03					
Credits:03					
Prerequisite:					
Basic Electronics, Analog Electronics Circu	its, Power Electronics				
Course learning Objectives:					
CLO1: To analyze Power diodes and rectifier	S.				
CLO2: To analyze and design DC to DC con-	verters.				
CLO3: To analyze DC to AC converters.					
CLO4: To analyze Switched circuits.					
CLO5: To analyze AC Voltage Regulators.					
UNIT -1 8 Hours					
	n, Performance Parameters	-			
Wave Rectifiers, Single-Phase Full-Wave Re					
Rectifier with a Highly Inductive Load,					
Bridge Rectifier with RL Load, Three-Pha	•	•			
Comparisons of Diode Rectifiers, Rectifier C		age with Lo	C Filter.		
Self-Study Content:1. Effects of Source and I					
	ons for Selecting Inductors	and Capac	itors		
Textbook1:3.1-3.5, 3.7-3.12					
Teaching Learning Process: Flip Class					
UNIT 2:			Hours		
Analysis and design of DC to DC conver					
DC-DC Converters, Principle of Step-Down					
Principle of Step-Up Operation, Step-Up Converter with a Resistive Load, Frequency					
Limiting Parameters, Converter Classification, Switching-Mode Regulators, Comparison of					
Regulators.					
Self-Study Content: 1. Multi output Boost Converter,					
2. Diode Rectifier-Fed Boost Converter,3. Design Considerations for Input Filter and Converters					
	for input Filter and Conve	riers			
Teaching Learning Process PDT					
Teaching Learning Process: PPT		Т -			

UNIT 3:

8 Hours

Analysis and design of DC to AC converters: Introduction, Performance Parameters, Principle of Operation, Single-Phase Bridge Inverters, Three-Phase Inverters, Voltage Control of Single-Phase Inverters, Harmonic Reductions, Current-Source Inverters.

Self-Study Content:1. Boost Inverter

2. Inverter Circuit Design

Textbook1: 6.1-6.6, 6.8, 6.9

Teaching Learning Process: PPT

UNIT 4: 8 Hours

Analysis of switched circuits:

Thyristor: Introduction, Thyristor Characteristics, Two-Transistor Model of Thyristor.

Controlled Rectifiers: Introduction, Single-Phase Full Converters, Single-Phase Dual Converters, Three-Phase Dual Converters, Single-Phase Series Converters.

Self-Study Content: 1. Thyristor Types

- 2. Twelve-Pulse Converters
- 3. Design of Converter Circuits

Textbook1: 9.1-9.3, 10.1,10.2,10.3,10.4,10.7

Teaching Learning Process: Case Study

UNIT 5:

AC Voltage Regulators: Introduction, Performance Parameters of AC Voltage Controllers, Single-Phase Full-Wave Controllers with Resistive Loads, Single-Phase Full-Wave Controllers with Inductive Loads, Three-Phase Full-Wave Controllers, Three-Phase Full-Wave Delta-Connected Controllers, Single-Phase Transformer Connection Changers, Cyclo converters, AC Voltage Controllers with PWM Control, Matrix Converter.

Self-Study Content: 1. Design of AC Voltage-Controller Circuits

2. Effects of Source and Load Inductances

Teaching Learning Process: Case Study

Textbook1: 11.1-11.10

Course Outcomes: At the end of the course students should be able to:

CO1: Analyse the Power diodes and rectifiers.

CO2: Analyze and Design DC to DC converters.

CO3: Analyze and Design the DC to AC converters.

CO4: Analyze the Switched circuits

CO5: Analyze the AC Voltage Regulators

Suggested Learning Resources:

		4 1				
	ex1	ы	h	\mathbf{n}	76	
•	C. A.		,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		١.

1	TP:41	A .1	37 0	D 11' 1
1	Title	Author	Year &	Publish
			Edition	er
1	Power Electronics	Muhammad H. Rashid	2014.	Pearson
	Devices, Circuits, and		Fourth Edition	Educati
	Applications			on
				Limited

Reference Books:

1	PowerElectronics:converters,Applic	NedMohan,Undelanda	2003.	JohnW
	ationanddesign'	ndRobbin	Third Edition	iley
2	Principles of Electric Machines and	P.CSen.,	2007	JohnWi
	PowerElectronics		Second	ley
			Edition,NewD	-
			elhi,	

Web links and Video Lectures (e-resources)

- 1.https://pdfcoffee.com/power-electronics-converters-applications-and-design-third-editionned-mowpdf-pdf-free.html
- 2.https://archive.nptel.ac.in/courses/117/103/117103148/
- 3.https://archive.nptel.ac.in/courses/108/102/108102157/

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

PART-B					
Academic year:2024-25	Seme	ster:I		Scheme:P24	
Course Title: POWER CONVERTERS					
Course Code: P24MECE144	ı	CIE Marks:50		CIE Weighta	ge:50%
Teaching hours/week (L:T:P)	3:0:0	SEE Marks:100		SEE Weighta	ge:50%
Teaching hours of Pedagogy:40 Exam Hours: 03					
Credits:03					
Name of the Course Coordin	nator: [t	eam designing th	e cour	se]	
Course Out	comes		H	Expected	Program
			Blo	om's Level	Outcomes
CO1: Analyse the Power diod	es and r	ectifiers.		L2	PO2,PO5
CO2: Analyze and Design DC to DC converters.				L2, L3	PO2, PO5
CO3: Analyze and Design the DC to AC converters.				L2,L3	PO2, PO4
CO4: Analyze the Switched c	ircuits			L2	PO2, PO3
CO5: Analyze the AC Voltag	e Regula	ators		L2	PO2, PO4

COURSE ARTICUALTION MATRIX							
	PO1 PO2 PO3 PO4 PO5 PSO1 PSO2						
CO1		2			2		2
CO2		2			2		2
CO3		2		2			2
CO4		2	2				2
CO5		2		2			2

PROFESSIONAL ELECTIVE 2						
PART-A						
Academic Year: 2024-25	Semester: I	Scheme: P24				
Course Title: ADVANCED EMBEDDED SY	Course Title: ADVANCED EMBEDDED SYSTEMS					
Course Code: P24MECE151	CIE Marks: 50	CIE Weightage: 50%				
Teaching hours/week (L:T:P): 3 : 0 : 0	SEE Marks:100	SEE Weightage: 50%				
Teaching hours of Pedagogy: 40 Exam Hours: 3 Hours						
Credits: 03	•					

Prerequisite:

Basic knowledge of digital electronics, Embedded systems concepts, including microcontroller programming and familiarity with C/C++ programming languages.

Course learning Objectives:

- CLO1: To understand the difference between Embedded Systems and General Computing Systems.
- CLO2: To understand the Classification of Embedded Systems based on Performance, Complexity along with the Domains and Areas of Applications of Embedded **Systems**
- CLO3: Analysis of a Real Life example on the bonding of Embedded Technology with Human Life
- CLO4: To understand the difference between Microcontrollers and ARM Cortex processors.
- CLO5: To learn Programming using assembly and C language, CMSIS for variety of End Applications.

UNIT-1 8 Hours

Embedded System: Embedded v/s General Computing System, classification, application and purpose of ES. Core of an Embedded System, Memory, Sensors, Actuators, LED, Opt coupler, Communication Interface, Reset circuits, RTC, WDT, Characteristics and Quality Attributes of Embedded Systems.

Self-Study Content:1. Explore how Embedded systems perform specific tasks in automotive, medical, and electronics.

2. Study UART, I2C, SPI protocols and SOC design tools.

Textbook Map:-Text 1: 1.1-1.6,2.1-2.7,3.1-3.2

Teaching Learning Process: Flipped Classroom/PPT

UNIT 2:

8 Hours

Hardware Software Co-Design: Embedded firmware design approaches, computational models, embedded firmware development languages, Integration and testing of Embedded Hardware and firmware, Components in embedded system development environment (IDE), Files generated during compilation, simulators, emulators and debugging.

- Self-Study Content: 1. Learn C, C++, and assembly languages for embedded system development.
 - 2. Discuss the tools are available for the Embedded system design

Textbook Map: Text 1: 9.1-9.2,12.1,13.1-13.4

Teaching Learning Process: Quiz/PPT

UNIT 3:

8 Hours

ARM-32 bit Microcontroller: Thumb-2 technology and applications of ARM, Architecture of ARM CortexM3, Various Units in the architecture, General Purpose Registers, Special Registers, exceptions, interrupts, stack operation, reset sequence.

- Self-Study Content: 1. Compare ARM 32-bit architecture with other microcontroller architectures.
- 2. Prepare the report on in today electronics industry.

Textbook Map: Text 2:1.1-1.5,2.1-2.9,3.1-3.7

Teaching Learning Process: Think Pair share-peer teaching/PPT

UNIT 4:

8 Hours

InstructionSets: Assemblybasics, Instructionlistanddescription, usefulinstructions, MemorySy stems, Memorymaps, Cortex M3 implementation overview, pipeline and businterface, Exceptions ,NestedVectorinterruptcontrollerdesign,SystickTimer,Cortex-

M3ProgrammingusingassemblyandClanguage,CMSIS.

Self-Study Content:1. Identify the usage of Memory Systems in real time.

2. Explore programming ARM Cortex-M3 microcontrollers using both assembly and C language.

Textbook Map: Text 2:4.1-4.4,5.1-5.8,6.1-6.7,7.1-7.6,8.1-8.5,10.1-10.8

Teaching Learning Process: Seminar/ PPT

UNIT 5:

8 Hours

Introduction to RISC-V: Operations of the Computer Hardware, Operands of the Computer Hardware, Signed and Unsigned Numbers, Representing Instructions in the Computer, Logical Operations, Instructions for Making Decisions, RISC-V Addressing for Wide Immediate and Addresses, Parallelism and Instructions: Synchronization

Self-Study Content:1. Study how operands are used and processed in RISC-V hardware.

2. Explore how instructions are represented and stored in RISC-V systems.

Textbook Map: Text 3: 2.1-2.11

Teaching Learning Process: Seminar/PPT

Course Outcomes: At the end of the course students should be able to:

- CO1: Understand and apply knowledge of electronic circuits to explore the features of the ARM Cortex-M3, and design a real-time system that leverages its processing power, efficient interrupt handling, and power efficiency for performance.
- CO2: **Demonstrate** the use of a specific firmware design approach in the code design process.
- CO3: Develop the code for ARM Cortex-M3 microcontrollers using both assembly and C
- CO4: Design and implement an advanced embedded system that integrates RISC-V processor features using any suitable tool.

Suggested Learning Resources:

Textbooks:

1.	Title	Author	Year & Edition	Publisher
1	Introduction to embedded systems	K.V.Shibu	2009	TMH education Pvt. Ltd
2	The Definitive Guide to the ARM Cortex- M3	Joseph Yiu, Newnes,(Elsevier)	2010	2 nd Edition
3	Computer Organization and Design RISC-V Edition	David A.Patterson, John L.Hennessy, Morgan Kaufmann	2018	ISBN: 9780128122761.

Reference Books:				
1.	Embedded systems-A	James K.Peckol,	2008	2 nd Edition

contemporary design tool	John Wiley	

Web links and Video Lectures (e-resources)

1. https://nptel.ac.in/

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

PART-B						
Academic year:2024-25	Semester: I	Scheme:P24				
Course Title: ADVANCED EMBEDDED SYSTEMS						
Course Code: P24MECE151	CIE Marks: 50	CIE Weightage: 50%				
Teaching hours/week (L:T:P): 3 : 0 : 0	SEE Marks:100	SEE Weightage: 50%				
Teaching hours of Pedagogy: 40	Exam hours:3 Hours					
Credits: 03						

Name of the Course Coordinator: [team designing the course]

Course Outcomes	Expected	Program
	Bloom's Level	Outcomes
CO1: Understand and apply knowledge of electronic	.L1	PO1
circuits to explore the features of the ARM Cortex-M3,		
and design a real-time system that leverages its		
processing power, efficient interrupt handling, and power		
efficiency for performance.		
CO2: Demonstrate the use of a specific firmware design	L2	PO2
approach in the code design process.		
CO3: Develop the code for ARM Cortex-M3	L5	PO3
microcontrollers using both assembly and C language.		
CO4 : Design and implement an advanced embedded	L5	PO4
system that integrates RISC-V processor features using		
any suitable tool		

COURSE ARTICUALTION MATRIX							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2
CO1	3					3	
CO2		2					2
CO3			2				
CO4				3			

PART-A				
Academic Year: 2024-25	Semester: I	Scheme: P24		
Course Title: ADVANCED WIRELESS COMMUNICATION				

Course Code: P24MECE152	CIE Marks: 50	CIE Weightage: 50%	
Teaching hours/week (L:T:P)= 3:0:0	SEE Marks: 100	SEE Weightage: 50%	
Teaching hours of Pedagogy: 40	Exam Hours: 3 Hours		

Credits: 03 Prerequisite:

Fundamentals of digital communication signal processing, and wireless network.

Course learning Objectives:

CLO1: To enable students understand the various aspects of wireless communication

CLO2: To understand the concept behind the capacity of channels

CLO3: Gain the information on Linear time-invariant Gaussian channels, Capacity off adding channels

CLO4: Study uplink and downlink model of AWGN channel, fading channels

CLO5: Describe different types of diversity, Understanding concept behind modelling of **MIMO**

> UNIT-1 8 Hours

Physical modelling for wireless channels, Input/output model of the wireless channel:

Free space, Fixed transmit and receive antennas, Free space, moving antenna, Reflecting wall, fixed antenna, Reflecting wall, moving antenna Reflection from a ground plane, Power decay with distance and shadowing, Moving antenna, multiple reflectors, The wireless channel as a linear time-varying system, Baseband equivalent model, discrete time baseband model, Additive white noise

Self-Study Content: 1.Understand the input/output channel relationship, including channel impulse response, Doppler effect, and noise impacts.

Textbook Map: 2.1 to 2.2

Teaching Learning Process: Quiz/Seminar/Case Study/PPT

UNIT 2:

8 Hours

Time and frequency coherence, AWGN channel capacity: Time and frequency coherence: Doppler spread and coherence time, delay spread and coherence bandwidth, Repetition coding, Packing spheres, Capacity-achieving AWGN channel codes, Reliable rate of communication and capacity, Resources of the AWGN channel-Continuous-time AWGN channel, Power and bandwidth, Bandwidth reuse in cellular systems.

Self-Study Content: 1.Understand how channel stability impacts signal transmission over time and frequency.

2. Learn AWGN channel capacity using Shannon's theorem, focusing on the relationship between bandwidth, SNR, and maximum data rate.

Textbook Map: 2.3, 5.1 to 5.2

Teaching Learning Process: Quiz/Seminar/Case Study/PPT

UNIT 3:

8 Hours

Linear time - invariant Gaussian channels, Capacity of adding channels: Single input multiple output(SIMO) channel, Multiple input single output(MISO) channel, Frequencyselective channel, Slow fading channel, receive diversity, Transmit diversity, Transmit and receive diversity, Time and frequency diversity, Outage for parallel channels, Fast fading channel, Transmitter side information, Frequency-selective fading channels

Self-Study Content: 1. Explore linear time-invariant (LTI) Gaussian channels, focusing on how they model stable channels with constant properties over time.

Textbook Map: 5.3 to 5.4

Teaching Learning Process: Quiz/Seminar/Case Study/PPT

UNIT 4:

8 Hours

Iplink and Downlink AWGN channel, Uplink and Downlink fading channel: Capacity via Successive interference cancellation, Comparison with conventional CDMA, Comparison

8 Hours

with orthogonal multiple access, General K-user uplink capacity, Symmetric case: Two capacity achieving schemes, General case: super position coding achieves capacity, Slow fading channel, Fast fading channel, Full channel side information, Channel side information at receiver only, Full channel side information, Frequency selective fading channels.

Self-Study Content: 1. What role does power control play in managing uplink and downlink performance in fading environments.

Textbook Map: **6.1 to 6.5**

eaching Learning Process: Quiz/Seminar/Case Study/PPT

UNIT 5:

Multi user diversity, Physical Modeling of MIMO channels: Multiuser diversity gain, Multiuser versus classical diversity, Fair scheduling and multi user diversity, Channel prediction and feedback, Opportunistic beam forming using dumb antennas , Multiuser diversity in multi cell systems, Line-of-sight SIMO channel, Line-of-sight MISO channel, Antenna arrays with only a line-of- sight path, Geographically separated antennas, Line-ofsight plus one reflected path, MIMO multipath channel, Angular domain representation of signals, Angular domain representation of MIMO channels, Statistical modeling in the angular domain, Degrees of freedom and diversity, Dependency on antenna spacing.

Self-Study Content: 1.Explore physical modeling of MIMO channels to learn how spatial multiplexing and diversity enhance capacity and reliability in wireless systems.

Teaching Learning Process: Quiz/Seminar/Case Study/PPT

Textbook Map: 6.6 to 6.7, 7.2 to 7.3

Course Outcomes: At the end of the course students should be able to:

- CO1: Apply knowledge of communication systems to understand physical wireless channel models.
- CO2: Examine the effects of key parameters on the capacity of AWGN, LTI Gaussian, and fading channels.
- CO3: Develop advanced techniques to accurately model and estimate multiuser channels for effective resource allocation.
- CO4: Simulating the performance of various uplink and downlink models using existing tools.

Suggested Learning Resources:

Su	Suggested Learning Resources:						
Textbooks:							
1.	Title	Author	Year &		Publisher		
			Edition				
1	Fundamentals of	David Tse,			Cambridge University Press,		
	Wireless	Pramod			2005		
	Communications	Viswanath			ISBN: 978-0-521-84527-4		
2	Wireless	Andrea	2nd Edition		Cambridge University		
	Communications	Goldsmith			Press,2005		
					ISBN-10: 9780521704168		
					ISBN-13: 978-0521704168		
Re	Reference Books:						
1.	Wireless	Theodore	2nd	Pearson Education India			
	Communications:	Rappaport.	Edition	ISBN 9332576165, 9789332576162			
	Principles and						
	Practice						
2.	Wireless	Ke-Lin Du and		Cambi	ridge University Press, 2010		
	Communication	M. N. S. Swamy		ISBN:	0521114039,9780521114035		
	Systems						

Web links and Video Lectures (e-resources)

.https://nptel.ac.in/

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Flip Class
- 2. Seminar/poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

PART-B				
Academic year:2024-25	Scheme:P24			
Course Title: ADVANCED WIRELESS COMMUNICATION				
Course Code: P24MECE152 CIE Marks: 50		CIE Weightage: 50%		
Teaching hours/week (L:T:P)= 3:0:0	SEE Marks: 100	SEE Weighta	age: 50%	
Teaching hours of Pedagogy: 40	Exam Hours: 3	3 Hours		
Credits: 03				
Name of the Course Coordinator: [team	designing the cou	irse]		
Course Outcomes		T 4 1	D	
Course Outcomes		Expected	Program	
Course Outcomes		Expected Bloom's Level	Program Outcomes	
Course Outcomes CO1: Apply knowledge of communication	systems to	-	0	
		Bloom's Level	Outcomes	
CO1: Apply knowledge of communication	ls	Bloom's Level	Outcomes	
CO1: Apply knowledge of communication understand physical wireless channel mode	rs on the	Bloom's Level L3	Outcomes PO1	
CO1: Apply knowledge of communication understand physical wireless channel mode CO2: Examine the effects of key paramete	rs on the ing channels	Bloom's Level L3	Outcomes PO1	
CO1: Apply knowledge of communication understand physical wireless channel mode CO2: Examine the effects of key paramete capacity of AWGN, LTI Gaussian, and fad	rs on the ing channels urately model	Bloom's Level L3	Outcomes PO1 PO3	
CO1: Apply knowledge of communication understand physical wireless channel mode CO2: Examine the effects of key paramete capacity of AWGN, LTI Gaussian, and fad CO3: Develop advanced techniques to acc	rs on the ing channels urately model	Bloom's Level L3	Outcomes PO1 PO3	

COURSE ARTICUALTION MATRIX							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2
CO1	3					3	
CO2			2				
CO3		1					1
CO4		1	1				1

PART-B				
Academic Year: 2024-25 Semester:		Scheme: P24		
Course Title: MULTIMEDIA AND APPLICATIONS				
Course Code: P24MECE153	CIE Marks:50	CIE Weightage:50%		
Teaching hours/week (L:T:P)=3:0:0	SEE Marks:100	SEE Weightage:50%		
Teaching hours of Pedagogy:40	Exam Hours: 3(Theory)			

downlink models using existing tools.

Credits: 03

Prerequisite:

Basic knowledge of multimedia including text, image, audio, video including network terminology. Additionally an understanding of different multimedia compression techniques is recommended.

Course learning Objectives:

CLO1:Understand different multimedia encoding schemes and principles of compression algorithms

CLO2: Apply the encoding techniques for given data.

CLO3:Understand the mechanism of audio and video compression techniques and multimedia networks.

UNIT -1

8 Hours

Introduction: Multimedia information representation, Multimedia networks, Multimedia applications, Application and networking terminology, Network QoS and application QoS, Digitization principles, Text, images, audio and video.

RBT Levels: L2

Self-Study Content: Prepare a report of historical representation of multimedia information representation.

Textbook Map:1.1, 1.2,1.3,1.4,1.5, Ch 2:2.2-2.6

Teaching Learning Process: Power point presentation with case studies

UNIT 2:

8 Hours

Text and image compression: Compression principles, Text compression-Run length, Huffman, LZW, Document Image compression using T2 and T3 coding, image compression-GIF, TIFF and JPEG.

RBT Levels: L3

Self-Study Content: Understand the decoding of received bit stream.

Textbook Map: 3.1, 3.2,3.3.5,3.4.1,3.4.2,3.4.5

Teaching Learning Process: Power point presentation with case studies

UNIT $\overline{3}$:

8 Hours

Audio and Video Compression: Audio compression- principles, DPCM, ADPCM Adaptive and Linear Predictive coding, Code-Excited LPC, Perceptual coding, MPEG and Dolby coders video compression, Video compression principles.

RBT Levels: L3

Self-Study Content: Error resilience techniques

Textbook Map: 4.1, 4.2, 4.3, 4.3.1

Teaching Learning Process: Power point presentation with seminars

UNIT 4:

8 Hours

Video Compression Standards: H.261, H.263, MPEG, MPEG1, MPEG2, MPEG-4 and Reversible VLCs, MPEG-7 standardization process of multimedia content description, MPEG 21 multimedia framework.

RBT Levels:L3

Self-Study Content: Basics of computer based animation

Textbook Map:4.3.2,4.3.3,4.3.4,4.3.5,4.3.6,4.3.7,4.3.4, 3.6

Teaching Learning Process:Powerpoint presentation with guest lecture

UNIT 5:

8 Hours

Multimedia Networks: Basics of Multimedia Networks, Communications and Applications: Quality of Multimedia Data Transmission, Multimedia over IP, Multimedia over ATM Networks, Transport of MPEG-4, Media on Demand (MoD).

RBT Levels: L3, L4

Self-Study Content: Understand general concepts of token rings and FDDI.

Teaching Learning Process: Power point presentation with group discussion

Textbook Map:9.1,10.4.2,1.4.3

Course Outcomes: At the end of the course students should be able to :

Suggested Learning Resources:

Textbooks:

1.	Title	Author	Year &	Publisher
			Edition	
1	Multimedia Communications:	Fred	2001	ISBN:
	Applications, Networks,	Halsall,Pearson		97802013981871.
	Protocols and Standards	Education		
		Publishers		
2	Multimedia: Computing,	Raif Steinmetz,	2002	
	Communications	KlaraNahrstedt		
	andApplications			
Re	ference Books:			
1.	Multimedia Communication	K.R.Rao,Zoran	2004	
	Systems	S.Bojkovic,		
		DragoradA.Milo		
		vanovicm		
2.	Multimedia Networks:	Hans. W. Barz,	2016	ISBN:9781119090137
	Protocols, Design and	Gregory A.		
	Applications	Bassett		
3.	Multimedia: An Introduction	John Billamil,	2002	
		Louis Molina		

Web links and Video Lectures (e-resources)

1.https://nptel.ac.in/

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

L4

L3

PO2

PO5

	PART-B					
Academic year:2024-25	Semester: I	Scheme:P24				
Course Title: MULTIMEDIA AND	APPLICATIONS					
Course Code: P24MECE153	CIE Marks:50	CIE Weightage	:50%			
Teaching hours/week (L:T:P)=3:0:0	SEE Marks:100	SEE Weightage	e:50%			
Teaching hours of Pedagogy:40	Exam Hours: 3(The	ory)				
Credits: 03						
Name of the Course Coordinator: [team designing the course]						
Course Outcomes	S	Expected	Program			
		Bloom's Level	Outcomes			
CO1: Compare encoding schemes, m	ultimedia	L2	PO2			
techniques and multimedia communic						
CO2: Illustrate the working of encodi	L2	PO2				
multimedia algorithms.						

CO3: Design a subsystem and/or multimedia framework

multimedia technique, routing technique and multimedia

CO4: Analyse the impact and effectiveness of

for given requirements.

network.

COURSE ARTICUALTION MATRIX							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2
CO1		2					2
CO2		2					2
CO3		2					2
CO4					2		

PART-B								
Academic Year: 2024-25	Seme	ster: I	Scheme: P24					
Course Title: PROCESS CONTROL								
Course Code: P24MECE154		CIE Marks:50	CIE Weightage:50%					
Teaching hours/week (L:T:P)	3:0:0	SEE Marks: 100	SEE Weightage: 50%					
Teaching hours of Pedagogy:	10	Exam Hours: 3 hours						
Credits: 03								
Prerequisite:								

Electronic and Instrumentation, Control System

Course learning Objectives:

CLO1: To understand the need of process control, basic principles of various manufacturing processes.

CLO2: Apply engineering knowledge to do problem analysis in process control.

CLO3: To select the proper controller and apply the tuning rules to achieve optimum performance.

CLO4:To understand and interpret the predictive Control, Multivariate Statistical Techniques

CLO5: Apply knowledge of process control in Bio systems control design.

UNIT -1

8 Hours

Introduction to Process Control- Representative Process Control Problems, Illustrative Example—A Blending Process, Classification of Process Control Strategies, A More Complicated Example—A Distillation Column, The Hierarchy of Process Control Activities, An Overview of Control System Design.

Theoretical Models of Chemical Processes-The Rationale for Dynamic Process Models, General Modeling Principles, Degrees of Freedom Analysis, Dynamic Models of Representative Processes, Process Dynamics and Mathematical Models

Self-Study Content: Laplace Transforms of Representative Functions, Solution of Differential Equations by Laplace Transform Techniques, Partial Fraction Expansion

Textbook Map: 1.1–1.6, 2.1–2.5

Teaching Learning Process: Poster presentation/Quiz/Seminar/Team demonstration **UNIT 2:** 8 Hours

Transfer Function Models- Introduction to Transfer Function Models, Properties of Transfer Functions, Linearization of Nonlinear Models

Dynamic Behaviour of First-Order and Second-Order Processes- Standard Process Inputs, Response of First-Order Processes, Response of Integrating Processes, Response of Second-Order Processes

Self-Study Content: Dynamic Behaviour and Stability of Closed-Loop Control Systems, Closed-Loop Transfer Functions, Closed-Loop Responses of Simple Control Systems.

Textbook Map: 4.1- 4.3, 5.1- 5.4

Teaching Learning Process: Flip class/Quiz/Seminar/Team demonstration

UNIT 3: 8 Hours

Dynamic Response Characteristics of More Complicated Processes- Poles and Zeros and Their Effect on Process Response, Processes with Time Delays, Approximation of Higher-Order Transfer Functions, Interacting and Non interacting Processes, State-Space and Transfer Function Matrix Models, Multiple-Input, Multiple-Output (MIMO) Processes.

Development of Empirical Models from Process Data- Model Development Using Linear or Nonlinear Regression, Fitting First- and Second-Order Models Using Step Tests, Neural Network Models, Development of Discrete-Time Dynamic Models, Identifying Discrete-Time Models from Experimental Data.

Self-Study Content: Performance Criteria for Closed-Loop Systems, Model-Based Design

Methods, Controller Tuning Relations, Controllers with Two Degrees of Freedom.

Textbook Map: 6.1- 6.6, 7.1- 7.5

Teaching Learning Process: Quiz/Seminar/Team demonstration/One minute paper writing

UNIT 4:

8 Hours

Feedback Controllers- Introduction, Basic Control Modes, Features of PID Controllers. Digital Versions of PID Controllers, Typical Responses of Feedback Control Systems, On-Off Controllers.

Control System Instrumentation- Sensors, Transmitters, and Transducers, Final Control Elements Accuracy in Instrumentation

Self-Study Content: Process Safety and Process Control, Layers of Protection, Alarm Management, Abnormal Event Detection, Risk Assessment

Textbook Map: 8.1- 8.6. 9.1- 9.3

eaching Learning Process: Think pair share/One minute paper writing/ Quiz/Seminar

UNIT 5:

8 Hours

Model Predictive Control - Overview of Model Predictive Control, Predictions for SISO Models, Predictions for MIMO Models

Process Monitoring-Traditional Monitoring Techniques, Quality Control Charts, **Multivariate Statistical Techniques**

Bio systems Control Design- Process Modelling and Control in Pharmaceutical Operations, Process Modelling and Control for Drug Delivery

Self-Study Content: Model Predictive Control Calculations, Set-Point Calculations, Selection of Design and Tuning Parameters, Control Performance Monitoring

Teaching Learning Process: One minute paper writing/ Quiz/Seminar/Team demonstration Textbook Map: 20.1, 20.2, 20.3, 21.1, 21.2, 21.4, 23.1, 23.2.

Course Outcomes: At the end of the course students should be able to:

Suggested Learning Resources:

Textbooks:

1.	Title	Author	Year & Edition	Publisher
1	"Process Dynamics and Control"	D. E. Seborg, T.F. Edgar, D. A. Mellichamp	2004, Fourth Edition	Wiley
2	"Chemical Process Control An Introduction to Theory and Practice"	G. Stephanopolous	August 2000.	Prentice Hall India,
	ference Books:			
1.	"Process Control Instrumentation Technology"	C.D. Johnson,	2014	Prentice Hall India.
2.	"Process Control Systems Application Design and Adjustment"	F.G. Shinskey	3rd edition,	McGraw Hill International, 6. D.

Web links and Video Lectures (e-resources)

- 1. Flip Class
- 2. Seminar/ poster Presentation

- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

PART-B							
Academic year:2024-25 Semester: I			Scheme:P24				
Course Title: PROCESS CON	TROL	ı					
Course Code: P24MECE154		CIE Marks:50	CIE Weightage	:50%			
Teaching hours/week (L:T:P):	3:0:0	SEE Marks: 100	SEE Weightage	e: 50%			
Teaching hours of Pedagogy:40	0	Exam Hours: 3 hours					
Credits: 03							
Name of the Course Coordinate	ator: [t	eam designing the cou	rse]				
Course O	utcom	es	Expected	Program			
			Bloom's Level	Outcomes			
CO1: Apply knowledge to imp		•	L3	PO1			
systems using theoretical and n			120	101			
CO2: Analyze empirical mode							
predict chemical process dynar	nics and	d design control	L4	PO2			
strategies.							
CO3: Design and implement for							
instrumentation, and tune parar	L6	PO1					
performance.							
CO4: Develop process control	L6	PO4					
actuators, and optimization for	efficie	nt operation.	LU	104			

COURSE ARTICUALTION MATRIX							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2
CO1	2					2	
CO2		2					2
CO3	2					2	
CO4				2			

VLSI DESIGN LAB						
Course Code	P24MECEL16	CIE Marks	50			
Teaching Hours/Week(L:P:T/SDA)	0:1:1	SEE Marks	50			

Credits 02 03(Practical) Exam Hours **Course Objectives:** To Familiarize with the ASIC flow and cadence tool suite To Debug and develop RTL code To perform functional verification, Logical equivalence check(LEC), Timing and power analysis. To Develop embedded code for the given requirements To perform testing and verification of multithread application. **Experiments** Sl.No. Part-A **VLSI Digital Design** Write Verilog Code for the following circuits and their Test Bench for verification, ➤ An inverter, Buffer and Transmission gate ➤ Basic/Universal gates Flip flop -RS, D, JK, MS, T Write Verilog code for the following circuits and their Test Bench for verification 2 Carry Ripple Adder Carry Look Ahead adder Carry Skip Adder 3 Design the following circuits using ASIC Digital Design flow and Write a Verilog Code for 8-bit Booth Multiplication (Radix-4) 4 Design the following circuits using ASIC Digital Design flow and Write Verilog code for 4/8-bit Magnitude Comparator, Parity Generator, Design the following circuits using ASIC Digital Design flow and Write Verilog 5 code for 4/8-bit, LFSR, Universal Shift Register Design a Mealy and Moore Sequence Detector using Verilog to detect Sequence. 6 Part-B VLSI Analog Design (Upto Post Layout Simulation) Design single stage differential amplifier Design a simple 4/8-bit ADC converter 8 9 Design an op-amp with given specification* using differential amplifier Common source amplifier in library** **Course outcomes (Course Skill Set):**

At the end of the course the student will be able to:

- 1. **Develop** RTL code/Embedded code for given requirement
- 2. **Analyze** the given RTL/Embedded code.
- 3. **Debug** the given RTL/Embedded code
- 4. **Design** and **simulate** a module/system for given requirements

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. The student has to secure not less than 40% of maximum marks in the semester-end examination (SEE). In total of CIE and SEE student has to secure 50% maximum marks of the course.

Continuous Internal Evaluation (CIE):

CIE marks for the practical course is 50 Marks.

The split-up of CIE marks for record/journal and test are in the ratio 60:40.

- Each experiment to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments designed by the faculty who is handling the laboratory session and is made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled down to 30 marks (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct 01 tests for 100 marks, test shall be conducted after the 14th week of the semester.
- In test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability.
- The test marks is scaled down to 20 marks (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and marks of test is the total CIE marks scored by the student.

Semester End Evaluation (SEE):

SEE marks for the practical course is 50 Marks.

SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the University.

All laboratory experiments are to be included for practical examination.

(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. OR based on the course requirement evaluation rubrics shall be decided jointly by examiners.

Students can pick one question (experiment) from the questions lot prepared by the internal external examiners jointly.

Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners)

Change of experiment is allowed only once and 10% Marks allotted to the procedure part to be made zero. The duration of SEE is 03 hours

Suggested Learning Resources:

- "Introduction to Embedded Systems", Shibu K V, TMH Education Pvt Ltd, Second reprint, 2010, ISBN(13): 978-0-07-014589-4.
- "Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology: Circuit Design, and Process Technology" Luciano Lavagno, Igor L. Markov, Grant Martin, Louis K. Scheffer, CRC Press, ISBN-10: 0-8493-7924-5, ISBN-13: 978-0-8493-7924-6, 2006..
- "Digital VLSI Design (RTL to GDS)" Dr. Adam Teman, Emerging nano scaled Integrated Circuits and Systems (En ICS) Labs Faculty of Engineering, Bar-Ilan University

COURSE ARTICUALTION MATRIX							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2
CO1	3					3	

CO2		2				2
CO3	2				2	
CO4			3			

PART-A								
Academic Year: 2024-25	Semes	ster: II	Scheme: P24					
Course Title: Design of Analogous	Course Title: Design of Analog and Mixed Mode VLSI Circuits							
Course Code: P24MECE21		CIE Marks:50	CIE Weightage:50%					
Teaching hours/week (L:T:P):	Teaching hours/week (L:T:P): 3:0:2		SEE Weightage: 50%					
Teaching hours of Pedagogy:	40	Exam Hours: 3 hours						
Credits: 04								
Prerequisite:								
Prerequisite: 1. Basics of electronics 2. Circuit analysis 3. Signals and converters								
Course learning Objectives:								
CLO1: To understand the basis	ic physi	cs and operation of M	IOS devices.					

CLO2: To study, analyse and design Single-Stage and Differential Amplifiers.

CLO3: To analyse the amplifiers for different characteristics and responses.

CLO4: To Design Oscillators of given specifications.

CLO5: To Understand architecture of Data converter includes ADC (Analog to Digital) and DAC (Digital to Analog) Converters.

> UNIT -1 8 Hours

Basic MOS Device Physics: General considerations, MOS1/V Characteristics, second order effects, MOS device Models.

Single stage Amplifier: Basic Concepts, Common Source stage, Source follower.

Self-Study Content: Basic Current Mirrors, Cascade Current Mirrors.

Text book Map: 2.1 to 2.4, 3.1 to 3.4 (Text 1)

Teaching Learning Process: PPT/chalk and talk, Seminar.

UNIT 2: 8 Hours

Single stage Amplifier: Common-gate stage, Cascade Stage.

Differential Amplifiers: Single ended and differential operation, Basic differential pair,

Common mode response, Differential pair with MOS loads, Gilbert cell.

Self-Study Content: Feedback Topologies (Voltage - Voltage Feedback, Current -Voltage, Voltage – Current, Current – Current Feedback).

Text book Map: 3.1 to 3.6, 4.1 to 4.5 (Text 1)

Teaching Learning Process: PPT/chalk and talk/simulation.

UNIT 3: 8 Hours

Frequency Response of Amplifiers: General Considerations, Miller Effect, Association of Poles with Nodes, Common-Source Stage, Source Followers.

Noise: Statistical Characteristics of Noise, Noise Spectrum, Amplitude Distribution, Correlated and Uncorrelated Source, Signal-to-Noise Ratio, Noise Analysis Procedure, Types of Noise, Thermal Noise, Flicker Noise, Representation of Noise in Circuits, Noise in Single-Stage Amplifiers, Common-Source Stage, Common-Gate Stage.

Self-Study Content: Multipole Systems, Phase Margin.

Text book Map: **6.1 to 6.3, 7.1 to 7.4.2 (Text 1)**

Teaching Learning Process: PPT/chalk and talk /Individual Role play/Team

Demonstration.

UNIT 4: 8 Hours

Oscillators: General Considerations, Ring Oscillators, LC Oscillators, Basic Concepts, Cross-Coupled Oscillator, Colpitts Oscillator.

Phase-Locked Loops: Simple PLL, Phase Detector, Basic PLL Topology, Dynamics of Simple PLL.

Self-Study Content: PFD/CP Non idealities, Jitter in PLLs.

Text book Map: 15.1 to 15.3.3, 16.1 to 16.1.3 (Text 1).

Teaching Learning Process: PPT/chalk and talk / Individual Role play/Team Demonstration.

> **UNIT 5:** 8 Hours

Data Converter Architectures: DAC & ADC Specifications, Digital Input Code, Resistor Steering, R-2R Ladder Networks, Current Steering DAC, Charge Scaling DAC, Cyclic DAC, Pipeline DAC, Flash ADC, Successive Approximation ADC.

Self-Study Content: Mixed Mode Layout Issues.

Text book Map: **29.1 to 29.1.7, 29.2, 29.2.1, 29.2.5** (**Text 2**)

Teaching Learning Process: PPT/chalk and talk/Flip class/ Case study.

Course Outcomes: At the end of the course students should be able to:

- CO1: Analyse amplifiers, oscillators and data converter circuits.
- CO2: Design amplifiers, oscillators and data converters for given specifications.
- CO3: Simulate and analyse the characteristics of the given analog or mixed mode circuit.
- CO4: Write a technical report on the given design/research article.

Suggested Learning Resources:

Textbooks:

1.	Title	Author	Year & Edition	Publisher
1	Design of Analog	Behzad Razavi	2007	ISBN 978-0-07-
	CMOS Integrated			252493-2
	Circuits, 2 nd Edition.			MHID 0-07-252493-6
2	CMOS Circuit Design,	R.Jacob Baker	1988	ISBN 0-07-029158 - 6
	Layout and Simulation,			
	Wiley Second Edition			
Re	ference Books:			
1.	CMOS Analog Circuit	Phillip E.	2002	ISBN 0-19-511644 - 5
	Design, Second Edition,	Allen, Douglas		Oxford University Press
	Oxford University Press.	R. Holberg,		Ţ.

Web links and Video Lectures (e-resources)

1. VTU e-learning Resources

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

PART-B					
Academic year:2024-25	Seme	ster: I	Scheme:P24		
Course Title: Design of Analog	cuits				
Course Code: P24MECE21	CIE Weightage	:50%			
Teaching hours/week (L:T:P):	3:0:2	SEE Marks: 100	SEE Weightage	e: 50%	
Teaching hours of Pedagogy:40	0	Exam Hours: 3 hours			
Credits: 03					
Name of the Course Coordin	ator: [t	team designing the cou	rse]		
Course Outcomes			Expected	Program	
				O	
			Bloom's Level	Outcomes	
CO1: Analyse amplifiers, os	scillator	rs and data converter	_	O	
CO1: Analyse amplifiers, os circuits and responses.	scillator	rs and data converter	Bloom's Level	Outcomes	
			Bloom's Level	Outcomes	
circuits and responses. CO2: Design amplifiers, oscil given specifications.	lators a	and data converters for	Bloom's Level L4	Outcomes PO1	
circuits and responses. CO2: Design amplifiers, oscil.	lators a	and data converters for	Bloom's Level L4	Outcomes PO1	
circuits and responses. CO2: Design amplifiers, oscil given specifications.	lators a	and data converters for acteristics of the given	L4 L3	Outcomes PO1 PO1	
circuits and responses. CO2: Design amplifiers, oscill given specifications. CO3: Simulate and analyse the	lators a	and data converters for acteristics of the given	L4 L3	Outcomes PO1 PO1	
circuits and responses. CO2: Design amplifiers, oscill given specifications. CO3: Simulate and analyse the analog or mixed mode circuits	lators a e chara and pre	and data converters for acteristics of the given esent a summary of the	L4 L3	Outcomes PO1 PO1	

COURSE ARTICUALTION MATRIX									
	PO1 PO2 PO3 PO4 PO5 PSO1 PSO2								
CO1	2					2			
CO2	3					3			
CO3			3						
CO4		1			1				

Practical Component of IPCC

Sl.No	Experiments
1	Design an op-amp with given specification* using differential amplifier Common
	source amplifier in library.
	(Applicable Library should be added & information should be given to the
	Designer.)
2	Designa 4 bit R-2R based DAC for the given specification (Applicable Library
	should be added & information should be given to the Designer.)
3	Design an Integrator using OPAMP (First Order)
4	Design a Differentiator using OPAMP (First Order)
5	Design and characterize a basic Sigma delta ADC from the available designs.

PART-A						
Academic Year: 2024-25 Semes		ster: II	Scheme: P24			
Course Title: VLSI Testing an	d Veri	fication				
Course Code: P24MECE22		CIE Marks:50	CIE Weightage:50%			
Teaching hours/week (L:T:P): 3:0:0		SEE Marks: 100	SEE Weightage: 50%			
Teaching hours of Pedagogy:40		Exam Hours: 3 hours				
C 1:4 02						

Credits: 03 Prerequisite:

1. Fundamental of digital electronics 2. HDL programming

Course learning Objectives:

CLO1: To study Faults in digital circuits.

CLO2: To learn various algorithms for test generation of Combinational Logic Circuits.

CLO3: To study the approach to deal with the testing problems at the chip level (BIST).

CLO4: To know about Design Verification Concepts, Simulator Architectures and Operations.

> UNIT -1 8 Hours

Faults in digital circuits: Failures and Faults, Modelling of faults, Temporary Faults. Test generation for Combinational Logic circuits: Fault Diagnosis of digital circuits, Test generation techniques for combinational circuits (One Dimensional Path Sensitization, Boolean Difference, D-Algorithm).

Self-Study Content: The Reed-Muller Expansion Technique, Three-Level OR-AND-OR Design

Text book Map: Text 1: 1.1-1.3, 2.1, 2.2.1, 2.2.2, 2.2.3

Teaching Learning Process: Flipped Classroom

UNIT 2:

8 Hours

Test generation for Combinational Logic circuits: Test generation techniques for combinational circuits (PODEM, FAN, Delay Fault Detection), Detection of multiple faults in Combinational logic circuits.

Design of test able sequential circuits: Controllability and Observability, Ad-Hoc design rules for improving testability, design of diagnosable sequential circuits, The scan-path technique for testable sequential circuit design.

Self-Study Content: Testing of Sequential Circuits as Iterative Combinational Circuits

Text book Map: Text 1: 2.2.4, 2.2.5, 2.2.6, 2.3, 5.1, 5.2, 5.3, 5.4

Teaching Learning Process: Quiz/PPT

UNIT 3:

8 Hours

Built-In Self Test: Test pattern generation for BIST, Output response analysis, Circular BIST, BIST Architectures.

Self-Study Content: Testable Memory Design

Text book Map: Text 1: 6.1,6.2,6.3,6.4

Teaching Learning Process: Think Pair share- peer teaching

UNIT 4:

8 Hours

An Invitation to Design Verification: What is design verification? The basic verification principle, Verification methodology, Simulation-based verification versus formal verification, Limitations of formal verification, A quick overview of Verilog scheduling and execution

Coding for Verification: Functional correctness, Timing correctness.

Self-Study Content: Simulation Performance, Portability and Maintainability

Text book Map: Text 2: 1.1-1.6, 2.1,2.2

Teaching Learning Process: Seminar

UNIT 5: 8 Hours

Simulator Architectures and Operations: The compilers, The simulators, Simulator taxonomy and comparison, Simulator operations and applications.

Self-Study Content: Incremental Compilation

Text book Map: Text 2: 3.1, 3.2, 3.3, 3.4 Teaching Learning Process: Seminar/PPT

Course Outcomes: At the end of the course students should be able to :

CO1: Analyze the Digital circuits for testability using fault models, BIST and LFSR for possible test patterns

CO2: Generate test vectors or test patterns for testing given combinational or sequential logic circuit

CO3: Design built-in self-test for given digital circuit

CO4: Articulate the concepts of verification and devise the code to verify the function of given Digital Circuit

CO5: For a given topic on DFT/verification conduct literature survey, write and submit a report also make a presentation

Suggested Learning Resources:

Textbooks:

	1100001101			
1.	Title	Author	Year & Edition	Publisher
1	Digital Circuit Testing	Lala Parag K	1997, 1st	ISBN-13: 978-0-12-
	and Testability		Edition	434330-6, ISBN: 0-12-
				434330-9
2	Hardware Design	William K.Lam	2005	ISBN: 0-13-143347-4
	Verification:			
	Simulation and Formal			
	Method Based			
	Approaches			
Re	ference Books:			
1.	Digital Systems Testing	Abramovici M,	1994	
	and Testable Design and	Breuer M A,		
	Friedman A D			
2.	Essential of Electronic	Vishwani D	2002	ISBN: 0-7923-7991-8
	Testing for Digital,	Agarwal		
	Memory and Mixed			

Web links and Video Lectures (e-resources)

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

1. Flip Class

Signal Circuits

- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

PART-B						
Academic year:2024-25	Semes	ster: II	Sch	eme:P24		
Course Title: VLSI Testing and Verification						
Course Code: P24MECE22	Course Code: P24MECE22 CIE Marks:50 CII					
Teaching hours/week (L:T:P)		SEE Marks: 100	SEI	E Weightage	e: 50%	
3:0:0						
Teaching hours of Pedagogy:	40	Exam Hours: 3 hours				
Credits: 03						
Name of the Course Coordin	nator: [team designing the cou	ırse]			
Course	Outco	omes		Expected	Program	
				Bloom's	Outcomes	
				Level		
CO1: Using the fault models	•	9		L4	PO1	
testability, BIST and LFSR for		-				
CO2: Generate test vectors or	-			L6	PO1, PO2	
combinational or sequential lo	ogic circ	cuit and write a report on	1			
test coverage.				L6		
	CO3: Design built-in self-test for the given digital circuit.				PO1	
-	CO4: Articulate the concepts of verification and devise the				PO1, PO3	
code to verify the function of						
latest developments in testing						
report.		21 1 11			201 202	
CO5: For a given topic on DI			e	L4, L6	PO4, PO5	
survey, write and submit a rep	ort also	make a presentation.				

COURSE ARTICUALTION MATRIX							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2
CO1	2					2	
CO2	2	2				2	2
CO3	2						
CO4	2		2			2	
CO5				2	2	2	

PART-A						
Academic Year: 2024-25 S	lemest	er: II	Scheme: P24			
Course Title: ARM Cortex-M3 and M4 Processors						
Course Code: P24MECE23		CIE Marks:50	CIE Weightage:50%			
Teaching hours/week (L:T:P): 3:0:0		SEE Marks: 100	SEE Weightage: 50%			
Teaching hours of Pedagogy:40		Exam Hours: 3 hours				
Credits: 03						

Prerequisite:

- Digital design. 1.
- Microcontroller architecture and programming. 2.
- Computer organization.

Course learning Objectives:

CLO1: To study architecture and basics of ARM Cortex-M3/M4 processors.

CLO2: To Develop assembly-level and Embedded C programs and interface with other External Devices.

CLO3: To study software development for systems based on Cortex-M3/M4 Processor.

UNIT -1

8 Hours

Introduction to ARM Cortex-M Processors: Introduction, Advantages and Applications to Cortex - M processors, Resources for using ARM processors and ARM Microcontrollers, Background and history of ARM.

Technical Overview: General information about the Cortex-M3 and Cortex-M4 processors Features of the Cortex-M3 and Cortex-M4 processors.

Self-Study Content: Understand the concepts of Introduction to Embedded Software Development flow and Software flow.

Text book Map: Chapter 1 and Chapter 3.

Teaching Learning Process: Power point presentation, interactive session, chalk and talk.

UNIT 2:

8 Hours

Architecture: Introduction to the architecture, Programmer's model, Behaviour of the application program status register (APSR), Memory system, Exceptions and interrupts, System control block (SCB), Debug, Reset and reset sequence.

Instruction Set: Background to the instruction set in ARM Cortex-M processors, Comparison of the instruction set in ARM Cortex-M processors, Understanding the assembly language syntax, Use of a suffix in instructions, Unified assembly language (UAL).

Self-Study Content: Learn Data types in C programming, Inputs-outputs and peripherals accesses for Embedded Software Development.

Text book Map: Chapter 4 and Chapter 5 (5.1 - 5.5).

Teaching Learning Process: Power point presentation, interactive session, chalk and talk.

UNIT 3:

8 Hours

Instruction Set: Instruction Set, Cortex-M4 specific instructions, Barrel shifter, Accessing special instructions and special registers in programming

Self-Study Content: Study and present the journal paper "Liu, H. (2023). ARM-Based Embedded System Platform and Its Portability Research. Journal of Computer and Communications, 11(11), 51-63" with DOI: https://doi.org/10.4236/jcc.2023.1111003

Text book Map: Chapter 5 (5.6 - 5.9).

Teaching Learning Process: Individual Presentation on the assigned topic.

UNIT 4:

8 Hours

Memory System: Overview of memory system features, Memory map, Connecting the processor to memory and peripherals, Memory requirements, Memory endianness, Data alignment and unaligned data access support, Default memory access permissions, Memory access attributes.

Exceptions and Interrupts: Overview of exceptions and interrupts, Exception types, Overview of interrupt management, Definitions of priority, Vector table and vector table relocation, Interrupt inputs and pending behaviours, Exception sequence overview, Details of NVIC registers for interrupt control, Details of SCB registers for exception and interrupt control.

Self-Study Content: Study Bit-band operations and Memory system in a microcontroller.

Text book Map: Chapter 6 (6.1 - 6.6, 6.8, 6.9) and Chapter 7 (7.1 - 7.9).

Teaching Learning Process: Power point presentation, group discussion, chalk and talk,

UNIT 5:

Exceptions and Interrupts: Details of special registers for exception or interrupt masking, Example procedures in setting up interrupts, Software interrupts.

Low Power and System Control Features: Low power designs, Low power features, Using WFI and WFE instructions in programming, Developing low power applications, The SysTick timer, Self-reset, CPU ID base register, Configuration control register, Auxiliary control register, Co-processor access control register.

Self-Study Content: Study and present the journal paper "Oyetoke, O. O. (2017). A practical cortex-M3 processor application of ARM core in embedded engineering. International Journal of Intelligent Systems and Applications, 9(7), 70" with DOI: https://doi.org/10.5815/ijisa.2017.07.08

Text book Map: Chapter 7(7.10 - 7.12) and Chapter 9.

Teaching Learning Process: Individual Presentation on the assigned topic.

Course Outcomes: At the end of the course students should be able to :

CO1: Sketch the architecture of ARM Cortex-M3/M4 processor and illustrate the, modes of operation, instruction set architecture, memory organization and interrupts.

CO2: Illustrate interrupt mechanism with related registers details.

CO3: Analyze the given assembly/Embedded C code for ARM Cortex-M3/M4 and summarize the findings.

CO4: Develop assembly/embedded C code for given function/application specifications.

CO5: Demonstrate and present a summary/report on peripheral interfacing with advanced programming of ARM Cortex M3/M4 microcontrollers for real-time applications.

Suggested Learning Resources:

Textbooks:

1.	Title	Author	Year & Edition	Publisher
1	Definitive Guide to ARM Cortex-M3 and	Joseph Yiu	2014 & 3 rd Edition	Newnes Publication
	Cortex-M4 Processors		Edition	
2				

Reference Books:

1.	ARM System-on-Chip	System-on-Chip S. Furber		Wesley Publication
	Architecture		Edition	
2.	Microcontroller-Theory	A. Deshmukh	2017	Tata McGraw Hill
	& Applications			Publication

Web links and Video Lectures (e-resources)

ARM Architecture Fundamentals:

https://www.youtube.com/watch?v=7LqPJGnBPMM

ARM Instruction Set:

https://www.youtube.com/@IITKharagpurJuly-is9ie

Learn Embedded Systems Design on ARM based Microcontrollers:

https://youtu.be/MfhTBeaDpQA

ARM Cortex-M3 Processor:

https://youtu.be/njjP6sdkqgM

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

PART-B						
Academic year:2024-25	Scheme:P24					
Course Title: ARM Cortex-M	Course Title: ARM Cortex-M3 and M4 Processors					
Course Code: P24MECE23	CIE Weightage	:50%				
Teaching hours/week (L:T:P): 3:0:0 SEE Marks: 100			SEE Weightage: 50%			
Teaching hours of Pedagogy:40 Exam Hours: 3 hours						
Credits: 03						
Name of the Course Coordinator: [team designing the course]						
Course O	Expected	Program				

Course Outcomes	Expected	Program
	Bloom's Level	Outcomes
CO1: Sketch the architecture of ARM Cortex-M3/M4	L3	PO1
processor and illustrate the, modes of operation, instruction		
set architecture, memory organization and interrupts.		
CO2: Illustrate interrupt mechanism with related registers	L3	PO1
details.		
CO3: Analyze the given assembly/Embedded C code for	L4	PO2
ARM Cortex-M3/M4 and summarize the findings.		
CO4: Develop assembly/embedded C code for given	L5	PO3
function/application specifications.		
CO5: Demonstrate and present a summary/report on	L4	PO4,PO5
peripheral interfacing with advanced programming of ARM		
Cortex M3/M4 microcontrollers for real-time applications.		

COURSE ARTICUALTION MATRIX							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2
CO1	3					3	
CO2	3					3	
CO3		2					2
CO4			2				
CO5				2	2		

PART-A							
Academic Year: 2024-25	Semes	ster: II	Scheme: P24				
Course Title: Real Time Operating Systems							
Course Code: P24MECE24		CIE Marks:50	CIE Weightage:50%				
Teaching hours/week (L:T:P): 3:0:0		SEE Marks: 100	SEE Weightage: 50%				
Teaching hours of Pedagogy:40		Exam Hours: 3 hours					
Credits: 03							

Prerequisite:

- Knowledge of Computer Organization and Architecture.
- Understanding of Embedded Systems.
- Overview of the operating systems.

Course learning Objectives:

CLO1: Understand the concept of a real time system and their implementation.

CLO2: To gain knowledge of resource and memory management.

CLO3: Understand the role of process and threads in real time systems.

CLO4: To introduce firmware and debugging components in RTOS.

UNIT-1 8 Hours

Real-Time Systems and Resources: Brief history of Real Time Systems, A brief history of Embedded Systems. System Resources, Resource Analysis, Real-Time Service Utility, Scheduler concepts, Real-Time OS, State transition diagram and tables, Thread Safe Reentrant Functions.

Self-Study Content: Thread Safe Reentrant Functions.

Text book Map: **Text 1**: Chapter 1 and 2.

Teaching Learning Process: PPT/Flipped Classroom

UNIT 2:

8 Hours

Processing with Real Time Scheduling: Pre-emptive Fixed Priority Scheduling Policies with timing diagrams and problems and issues, Feasibility, Rate Monotonic least upper bound, Necessary and Sufficient feasibility, Deadline-Monotonic Policy, Dynamic priority policies.

Self-Study Content: Alternative to RM policy

Text book Map: **Text 1**: Chapter 2, 3,7.

Teaching Learning Process: Seminar

UNIT 3:

8 Hours

Memory and I/O Resources: Worst case execution time, Intermediate I/O, Shared Memory, ECC Memory, Flash file systems. Multi resource Services, Blocking, Deadlock and livelock, Critical sections to protect shared resources, Missed deadline, QoS, Reliability and Availability, Similarities and differences.

Self-Study Content: Reliable software, Available software.

Text book Map: **Text 1**: Chapter 4, 5,6,7,11.

Teaching Learning Process: Seminar/Simulation

UNIT 4:

8 Hours

Firmware Components: The 3 firmware components, RTOS system software mechanisms, Software application components.

Debugging Components: Exceptions, assert, checking return codes, Single-step debugging, Test access ports, Trace Ports.

Self-Study Content: Power-On Self-Test and Diagnostics, External Test Equipment,

Application-Level Debugging.

Text book Map: **Text 1:** Chapter 8 and 9.

Teaching Learning Process: Group discussion with Case study/ Flipped Classroom

UNIT 5:

Process and Threads: Mutex, Mailboxes, Shell Programming, Process and Thread creations, Multithreading, Programs related to semaphores, Shared Memory, Message queue.

Self-Study Content: Shared Buffer applications involving inter task /thread communication.

Text book Map: **Text 2:** Chapter 7.5, 7.6, 11.2, 11.3.

Teaching Learning Process: PPT/ Chalk and Talk/ Seminar

Course Outcomes: At the end of the course students should be able to :

CO1: Describe the real time operating system concepts, real time service utilities, debugging methodologies and optimization techniques.

CO2: Apply appropriate system resources (CPU, I/O, Memory, Cache, ECC Memory, Microcontroller/ FPGA/ ASIC) to improve the system performance.

CO3: Real time operating system applications using modern tools.

Suggested Learning Resources:

Textbooks:

1.	Title	Author	Year & Edition	Publisher				
1	"Real-Time Embedded	Sam Siewert	Cengage					
	Systems and		Learning India					
	Components"		Edition, 2007					
2	"Embedded/ Real Time	Dr. K.V.K.K	New edition,	Dream Tech Press				
	Systems, Concepts,	Prasad	2010					
	Design and							
	Programming"							
Re	Reference Books							

1.	"Real Time Systems"	Jane W S Liu	2008	Pearson education
2.	"Embedded System	Arnold S	2002	CMP Books
	Design- An Introduction	Berger		
	to Processes, Tools and			
	Techniques"			

Web links and Video Lectures (e-resources)

1. https://www.youtube.com/watch?v=dHsHP9RrXBw&list=PLJ5C_6qdAvBH-JNRIlupFb44miyx9M8JD

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

	PART-B			
Academic year:2024-25	Semester: II		Scheme: P	24
Course Title: Real Time Operating S	Systems			
Course Code: P24MECE24	CIE Marks:50		CIE Weigh	ntage: 50%
Teaching hours/week (L:T:P): 3:0:0	SEE Marks:100		SEE Weig	htage: 50%
Teaching hours of Pedagogy: 40 hrs	Exam Hours: 03(Theory	·)	Credits: 03	3
Course Outcomes			xpected m's Level	Program Outcomes
CO1: Describe the real time operating system concepts, real time service utilities, debugging methodologies and optimization techniques			erstanding d Apply	L2 (PO1)
CO2: Apply appropriate system in Memory, Cache, ECC Memory, Memory, ASIC), priority based static and dynamic techniques to improve the system performance.		Apply	L2 (PO1)	
CO3: Real time operating system ap tools.		•	Create	L3 (PO2, PO3, PO4, PO5)

COURSE ARTICUALTION MATRIX								
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	
CO1	3					3		
CO2	2					2		
CO3		2	1	1	1		2	

Academic Year: 2024-25 Semester: II Scheme: P24 Course Title: Fin FETs and Other Multi-Gate Transistors CIE Weightage: 50% Teaching hours/week (L:T:P): 30:0 SEE Marks: 50 SEE Weightage: 50% Teaching hours/week (L:T:P): 30:0 SEE Marks: 100 SEE Weightage: 50% Teaching hours of Pedagogy:40 Exam Hours: 3 hours Teaching All All All All All All All All All Al			PART-A				
Course Title: Fin FETs and Other Multi-Gate Transistors Course Code: P24MECE251 CIE Marks:50 SEE Weightage:50% Teaching hours of Pedagogy:40 Exam Hours: 3 hours Teaching hours of Pedagogy:40 Exam Hours: 3 hours Perrequisite: CMOS VLSI (Analog and Digital), Digital Electronics Course learning Objectives: CLO1: To learn the evolution of SOI MOS transistor. CLO2: To have an insight into thin film formation techniques and advanced gate stack deposition. CLO3: To enable the students to understand the physics of BSIM-CMG models. CLO4: To analyse the electrical characteristics of the multi-gate MOS system. CLO5: To realise the inter relationship between the multi-gate FET device properties and digital and analog circuits WINT -1 8 Hours The SOI MOSFET: From Single Gate to Multi-Gate: A brief history of Multiple-Gate MOSFETs, Multi Gate MOSFET scaling and Moore's law, Short-Channel Effects Text book Map: Text1- 1.4, 1.5 Teaching Learning Process: UNIT 2: 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: 8 Hours BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit to included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	Academic Year: 2024-25						
Course Code: P24MECE251					•		
Teaching hours/week (L.T.P): 3:0:0 SEE Marks: 100 SEE Weightage: 50% Teaching hours of Pedagogy:40 Exam Hours: 3 hours Teaching Larning Objectives: CMOS VLSI (Analog and Digital), Digital Electronics COurse learning Objectives: CLO1: To learn the evolution of SOI MOS transistor. CLO2: To have an insight into thin film formation techniques and advanced gate stack deposition. CLO3: To enable the students to understand the physics of BSIM-CMG models. CLO4: To analyse the electrical characteristics of the multi-gate MOS system. CLO5: To realise the inter relationship between the multi-gate FET device properties and digital and analog circuits UNIT -1 8 Hours The SOI MOSFET: From Single Gate to Multi-Gate: A brief history of Multiple-Gate MOSFETs, Multi Gate MOSFET physics. Self-Study Content: MOSFET scaling and Moore's law, Short-Channel Effects Text book Map: Text1 - 1.4, 1.5 Teaching Learning Process: UNIT 2: 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: 8 Hours BSIM-CMG: A Compact Model for Multi-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circui		ther ivi			age:50%		
Teaching hours of Pedagogy:40 Exam Hours: 3 hours Credits: 03 Prerequisite: CMOS VLSI (Analog and Digital), Digital Electronics Course learning Objectives: CLO1: To learn the evolution of SOI MOS transistor. CLO2: To have an insight into thin film formation techniques and advanced gate stack deposition. CLO3: To enable the students to understand the physics of BSIM-CMG models. CLO4: To analyse the electrical characteristics of the multi-gate FET device properties and digital and analog circuits UNIT -1 8 Hours The SOI MOSFET: From Single Gate to Multi-Gate: A brief history of Multiple-Gate MOSFETs, Multi Gate MOSFET physics. Self-Study Content: MOSFET scaling and Moore's law, Short-Channel Effects Text book Map: Text1- 1.4, 1.5 Teaching Learning Process: UNIT 2: 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: 8 Hours BSIM-CMG: A Compact Model for Multi-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3-2.		3.0.0					
Credits: 03 Prerequisite: CMOS VLSI (Analog and Digital), Digital Electronics Course learning Objectives: CLO1: To learn the evolution of SOI MOS transistor. CLO2: To have an insight into thin film formation techniques and advanced gate stack deposition. CLO3: To enable the students to understand the physics of BSIM-CMG models. CLO4: To analyse the electrical characteristics of the multi-gate MOS system. CLO5: To realise the inter relationship between the multi-gate FET device properties and digital and analog circuits UNIT -1 8 Hours The SOI MOSFET: From Single Gate to Multi-Gate: A brief history of Multiple-Gate MOSFETs, Multi Gate MOSFET physics. Self-Study Content: MOSFET scaling and Moore's law, Short-Channel Effects Text book Map: Text1-14, 1.5 Teaching Learning Process: UNIT 2: 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: 8 Hours BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2					<u>uage.</u> 5070		
Prerequisite: CMOS VLSI (Analog and Digital), Digital Electronics Course learning Objectives: CLO1: To learn the evolution of SOI MOS transistor. CLO2: To have an insight into thin film formation techniques and advanced gate stack deposition. CLO3: To enable the students to understand the physics of BSIM-CMG models. CLO4: To analyse the electrical characteristics of the multi-gate MOS system. CLO5: To realise the inter relationship between the multi-gate FET device properties and digital and analog circuits UNIT -1 8 Hours The SOI MOSFET: From Single Gate to Multi-Gate: A brief history of Multiple-Gate MOSFETs, Multi Gate MOSFET physics. Self-Study Content: MOSFET scaling and Moore's law, Short-Channel Effects Text book Map: Text1 - 1.4, 1.5 Teaching Learning Process: UNIT 2: 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: 8 Hours BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Double-Gate MOSFETs Residual Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2			Zitalii 110aisi 2 iloais	,			
Course learning Objectives: CLO1: To learn the evolution of SOI MOS transistor. CLO2: To have an insight into thin film formation techniques and advanced gate stack deposition. CLO3: To enable the students to understand the physics of BSIM-CMG models. CLO4: To analyse the electrical characteristics of the multi-gate MOS system. CLO5: To realise the inter relationship between the multi-gate FET device properties and digital and analog circuits UNIT 1 8 Hours The SOI MOSFET: From Single Gate to Multi-Gate: A brief history of Multiple-Gate MOSFETs, Multi Gate MOSFET physics. Self-Study Content: MOSFET scaling and Moore's law, Short-Channel Effects Text book Map: Text1-1.4, 1.5 Teaching Learning Process: UNIT 2: 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: 8 Hours BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3							
Course learning Objectives: CLO1: To learn the evolution of SOI MOS transistor. CLO2: To have an insight into thin film formation techniques and advanced gate stack deposition. CLO3: To enable the students to understand the physics of BSIM-CMG models. CLO4: To analyse the electrical characteristics of the multi-gate MOS system. CLO5: To realise the inter relationship between the multi-gate FET device properties and digital and analog circuits UNIT 1 8 Hours The SOI MOSFET: From Single Gate to Multi-Gate: A brief history of Multiple-Gate MOSFETs, Multi Gate MOSFET physics. Self-Study Content: MOSFET scaling and Moore's law, Short-Channel Effects Text book Map: Text1- 1.4, 1.5 Teaching Learning Process: UNIT 2: 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: 8 Hours BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2		tal). Di	igital Electronics				
CLO1: To learn the evolution of SOI MOS transistor. CLO2: To have an insight into thin film formation techniques and advanced gate stack deposition. CLO3: To enable the students to understand the physics of BSIM-CMG models. CLO4: To analyse the electrical characteristics of the multi-gate MOS system. CLO5: To realise the inter relationship between the multi-gate FET device properties and digital and analog circuits UNIT -1 R 8 Hours The SOI MOSFET: From Single Gate to Multi-Gate: A brief history of Multiple-Gate MOSFETS, Multi Gate MOSFET physics. Self-Study Content: MOSFET sealing and Moore's law, Short-Channel Effects Text book Map: Text1- 1.4, 1.5 Teaching Learning Process: UNIT 2: R 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: R Hours BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: R Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Text book Map: Text1-7.1-7.3.2		(11), 12	Situi Liceti oilles				
CLO2: To have an insight into thin film formation techniques and advanced gate stack deposition. CLO3: To enable the students to understand the physics of BSIM-CMG models. CLO4: To analyse the electrical characteristics of the multi-gate MOS system. CLO5: To realise the inter relationship between the multi-gate FET device properties and digital and analog circuits UNIT -1		of SOL	MOS transistor.				
deposition. CLO3: To enable the students to understand the physics of BSIM-CMG models. CLO4: To analyse the electrical characteristics of the multi-gate MOS system. CLO5: To realise the inter relationship between the multi-gate FET device properties and digital and analog circuits UNIT -1 8 Hours The SOI MOSFET: From Single Gate to Multi-Gate: A brief history of Multiple-Gate MOSFETS, Multi Gate MOSFET physics. Self-Study Content: MOSFET scaling and Moore's law, Short-Channel Effects Text book Map: Text1- 1.4, 1.5 Teaching Learning Process: UNIT 2: 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: 8 Hours BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2				es and advanced	gate stack		
CLO3: To enable the students to understand the physics of BSIM-CMG models. CLO4: To analyse the electrical characteristics of the multi-gate MOS system. CLO5: To realise the inter relationship between the multi-gate FET device properties and digital and analog circuits UNIT -1			1		8		
CLO5: To realise the inter relationship between the multi-gate MOS system. CLO5: To realise the inter relationship between the multi-gate FET device properties and digital and analog circuits UNIT -1	-	o unde	rstand the physics of E	SSIM-CMG mod	dels.		
CLO5: To realise the inter relationship between the multi-gate FET device properties and digital and analog circuits UNIT -1 8 Hours The SOI MOSFET: From Single Gate to Multi-Gate: A brief history of Multiple-Gate MOSFETS, Multi Gate MOSFET physics. Self-Study Content: MOSFET scaling and Moore's law, Short-Channel Effects Text book Map: Text1-1.4, 1.5 Teaching Learning Process: UNIT 2: 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: 8 Hours BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2							
The SOI MOSFET: From Single Gate to Multi-Gate: A brief history of Multiple-Gate MOSFETS, Multi Gate MOSFET physics. Self-Study Content: MOSFET scaling and Moore's law, Short-Channel Effects Text book Map: Text1-1.4, 1.5 Teaching Learning Process: UNIT 2: 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: 8 Hours BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	•		•	•			
The SOI MOSFET: From Single Gate to Multi-Gate: A brief history of Multiple-Gate MOSFETs, Multi Gate MOSFET physics. Self-Study Content: MOSFET scaling and Moore's law, Short-Channel Effects Text book Map: Text1- 1.4, 1.5 Teaching Learning Process: UNIT 2: 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: 8 Hours BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2				1	1		
MOSFETs, Multi Gate MOSFET physics. Self-Study Content: MOSFET scaling and Moore's law, Short-Channel Effects Text book Map: Text1-1.4, 1.5 Teaching Learning Process: UNIT 2: 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2		UNI	T -1		8 Hours		
MOSFETs, Multi Gate MOSFET physics. Self-Study Content: MOSFET scaling and Moore's law, Short-Channel Effects Text book Map: Text1-1.4, 1.5 Teaching Learning Process: UNIT 2: 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	The SOI MOSFET: From Sin	gle Gat	e to Multi-Gate: A bri	ef history of Mu	ıltiple-Gate		
Self-Study Content: MOSFET scaling and Moore's law, Short-Channel Effects Text book Map: Text1- 1.4, 1.5 Teaching Learning Process: UNIT 2: 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: 8 Hours BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2				•	•		
Teaching Learning Process: UNIT 2: 8 Hours Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: 8 Hours BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2				ort-Channel Effe	ects		
Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: B Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: B Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	Text book Map: Text1- 1.4, 1.5	<u> </u>					
Multi-gate MOSFET Technology: Introduction, Active Area: Fins, Gate Stack Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: B Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: B Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	Teaching Learning Process:						
Self-Study Content: Source/Drain Resistance and Capacitance, Mobility and Strain Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: B Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: B Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2		UNI	T 2:		8 Hours		
Engineering Text book Map: Text1-2.1-2.3 Teaching Learning Process: UNIT 3: BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: B Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: B Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	Multi-gate MOSFET Technol	logy: I	ntroduction, Active Ar	ea: Fins, Gate S	tack		
Teaching Learning Process: UNIT 3: BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: B Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: B Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2		ain Res	istance and Capacitano	ce, Mobility and	Strain		
Teaching Learning Process: UNIT 3: BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: B Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: B Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2							
BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: B Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: B Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2							
BSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	Teaching Learning Process:	TINIT	Т 2.		0 Попес		
Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG. Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	DSIM CMC. A Compact Mad			Introduction E			
Self-Study Content: The BSIM-IMG Model Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	DSIM-CMG: A Compact Model for Mult-Gate Transistors: Introduction, Framework for						
Text book Map: Text1-3.1-3.4 Teaching Learning Process: UNIT 4: B Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: B Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	Multi-Gate FET Modeling, Mu	Multi-Gate FET Modeling, Multi-Gate Models, BSIM-CMG and BSIM-IMG, BSIM-CMG.					
Teaching Learning Process: UNIT 4: B Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: B Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	Self-Study Content: The BSIM	Self-Study Content: The BSIM-IMG Model					
UNIT 4: 8 Hours Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	-						
Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system, Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	Teaching Learning Process:				1		
Two-dimensional confinement Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2							
Self-Study Content: Double-Gate MOSFETs and FinFETs. Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	Physics of the MultiGate MOS system: Device electrostatics, Double gate MOS system,						
Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	Two-dimensional confinement						
Text book Map: Text1-4.1-4.3 Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	Self-Study Content: Double-Gate MOSFETs and FinFETs.						
Teaching Learning Process: UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2							
UNIT 5: 8 Hours Multi-Gate MOSFET circuit Design: Introduction, Digital Circuit Design, Analog Circuit Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2	*						
Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2		UNI	T 5:		8 Hours		
Design (mixed and RF circuit not included) Self-Study Content: Mixed-signal aspects, RF circuit design Text book Map: Text1-7.1-7.3.2							
Text book Map: Text1-7.1-7.3.2							
Text book Map: Text1-7.1-7.3.2	Self-Study Content: Mixed-sign	nal asp					
Teaching Learning Process:							
	Teaching Learning Process:						

Course Outcomes: At the end of the course students should be able to :

CO1: Illustrate the working principle of FinFETs and multigate transistors with required structure and equations.

CO2: Analyze the circuits involving FinFETS and multigate devices with quantum effects and write a summary

CO3: Design FinFET based analog and digital circuits

CO4: Simulate the electrical and physical characteristics of the FinFET models along with multigate transistors

1.	Title	Author	Year & Edition	Publisher
1	FinFETs and other	J. P. Colinge	2008	springer
	Multi-Gate Transistors			
2				
Re	ference Books:			
1.	FinFET Modeling for IC	Yogesh Singh	2015	Academic Press
	Simulation and Design:	Chauhan,		
	using the BSIM-CMG	Darsen D		
	standard			
2.	Toward Quantum	Weihua Han,	2021	Springer Cham,
	FinFET	Zhiming M.	First Edition	
		Wang		
3.	FinFET Devices for	Samar Saha	2020	CRC Press
	VLSI Circuits and		First Edition	
	Systems			

Web links and Video Lectures (e-resources)

- 1. http://www.ee.iitb.ac.in
- 2. http://onlinecourses.nptel.ac.in
- 3. http://icmaskdesign.com
- 4. http://link.springer.com

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

PART-B						
Academic year:2024-25	Semest	ter: I	Scheme:P24			
Course Title: Fin FETs and Other Multi-Gate Transistors						
Course Code: P24MECE251		CIE Marks:50	CIE Weightage:50%			
Teaching hours/week (L:T:P):		SEE Marks: 100	SEE Weightage: 50%			
3:0:0						
Teaching hours of Pedagogy:40	C	Exam Hours: 3 hours				
Credits: 03						
Name of the Course Coordinator: [team designing the course]						

Course Outcomes	Expected Bloom's Level	Program Outcomes
CO1: Illustrate the impact of physical parameters of the	L4	PO1
FinFETS and multigate transistors on their electrical		
behaviour		
CO2: Analyze the circuits involving FinFETS and	L4	PO1, PO3
multigate devices with quantum effects and write a		
summary		
CO3: Design FinFET based analog and digital circuits	L5	PO1
CO4: Simulate the electrical and physical characteristics	L5	PO1,PO2
of the FinFET models along with multigate transistors		

COURSE ARTICUALTION MATRIX								
	PO1	PO1 PO2 PO3 PO4 PO5 PSO1 PSO2						
CO1	3					3		
CO2	3		2			3		
CO3	2					2		
CO4	2	2				2	2	
CO5								

PART-A							
Academic Year: 2024-25	Semes	ter: II	Scheme: P24				
Course Title: Hardware Security							
Course Code: P24MECE252		CIE Marks:50	CIE Weightage:50%				
Teaching hours/week (L:T:P): 3:0:0		SEE Marks: 100	SEE Weightage: 50%				
Teaching hours of Pedagogy:40		Exam Hours: 3 hours					
Credits: 03							
Duona auriaita.							

Prerequisite:

- 1. Basic VLSI Design
- 2. Digital Electronics and Logic Design
- 3. Fundamentals of Discrete Mathematics and Algebra

Course learning Objectives:

CLO1: To understand the current practice of SoC design and validation methodology.

CLO2: To understand the Security assets and attack models.

CLO3: To learn the detection of hardware Trojans in Ips

CLO4: To understand the Applications of PUFs

UNIT-1 8 Hours

Introduction: Mathematical Background: Modular Arithmetic, Groups, Rings, and Fields, Greatest Common Divisors and Multiplicative Inverse, Subgroups, Subrings, and Extensions Groups. Rings, and Field Isomorphisms, Polynomials and Fields, Construction of Galois Field, Extensions of Fields, Cyclic Groups of Group Elements, Efficient Galois Fields, Mapping between Binary and Composite Fields

Overview of Modern Cryptography: Introduction, Cryptography: Some Technical Details, Block Ciphers, The AES Round Transformations, Rijndael in Composite Field, Elliptic Curves, Scalar Multiplications: LSB First and MSB First Approaches, Montgomery's Algorithm for Scalar Multiplication

Self-Study Content: Difference between AES and DES

Text book Map: Chapter 1 and Chapter 2- Text 1

Teaching Learning Process: Power point presentation, interactive session, chalk and talk.

UNIT 2: 8 Hours

Security and Trust Vulnerabilities in Third-Party IPs: Design and Validation of SoCs, Security and Trust Vulnerabilities in Third-Party IPs, Trustworthy SoC Design Using Untrusted Ips.

Self-Study Content:

Text book Map: Chapter 1- Text 2

Teaching Learning Process: Power point presentation, interactive session, chalk and talk.

UNIT 3: 8 Hours

Security Rule Check: Introduction, Security Assets and Attack Models, DSeRC: Design Security Rule Check ,Development of DSeRC Framework

Self-Study Content:

Text book Map: Chapter 2- Text 2

Teaching Learning Process: Individual Presentation on the assigned topic.

UNIT 4: 8 Hours

Overview of Hardware Trojans: Introduction, Trojan Taxonomy and Examples, Multi-level Attacks, Effect of Hardware Trojan on Circuit Reliability, Hardware Trojan Insertion by Direct Modification of FPGA Configuration Bitstream

Code Coverage Analysis for IP Trust Verification, Hardware Trojan Structure, Related Work, A Case Study for IP Trust Verification, Simulation Results

Self-Study Content: Statistical Approach for Trojan Detection.

Text book Map: Chapter 13- Text 1, Chapter 4- Text 2

Teaching Learning Process: Power point presentation, group discussion, chalk and talk, **UNIT 5:**

Physically Unclonable Functions: Introduction, Classification of PUFs, Realization of Silicon PUFs, Performance Metrics for Quality valuation, Secure PUF: What Makes a PUF Secure, Applications of PUF as a Root-of-Trust, Attacks Model: How PUF Security Could Be Compromised, Looking Forward: What Lies Ahead for PUFs?

Self-Study Content: Genetic Programming based Model building Attack in PUFs

Text book Map: Chapter 18 (text 1)

Teaching Learning Process: Individual Presentation on the assigned topic.

Course Outcomes: At the end of the course students should be able to:

CO1: To Understand and apply fundamental concepts of algebraic structures (groups, rings, fields, and Galois fields), cryptographic algorithms (AES, elliptic curve cryptography), hardware Trojans, security vulnerabilities, and Physically Unclonable Functions (PUFs) in the context of hardware security.

CO2: To Apply cryptographic principles and security rule-checking methodologies (DSeRC framework) to identify and analyze vulnerabilities in System-on-Chip (SoC) designs and third-party IP integrations.

CO3: To Develop advanced security assessment frameworks, utilizing both analytical and simulation-based methods, to ensure hardware reliability and trustworthiness, with emphasis on effective countermeasures against security threats in practical hardware environments.

CO4: To Critically evaluate hardware designs and IP cores by performing comprehensive security assessments to detect, measure, and counteract hardware Trojans, side-channel vulnerabilities, and trust issues in third-party components

Suggested Learning Resources:

Textbooks:

1.	Title	Author	Year & Edition	Publisher
1	HARDWARE	Debdeep	2015	CRC
	SECURITY Design,	Mukhopadhyay		
	Threats, and	Rajat Subhra		
	Safeguards	Chakraborty		
2	Hardware IP Security	Prabhat Mishra ·	2017	Springer Publication
	and Trust	Swarup Bhunia		
		Mark Tehranipoor		
Re	ference Books:			
1.	Introduction to	Mohammad	2012	Springer
	Hardware Security	Tehranipoor		Publication
	and Trust	Cliff Wang		
2.				

Web links and Video Lectures (e-resources)

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

PART-B								
Academic year:2024-25	Academic year:2024-25 Semester: II Scheme:P24							
Course Title: Hardware Secur								
Course Code: P24MECE252	CIE Weightage:50%							
Teaching hours/week (L:T:P):	3:0:0	SEE Marks: 100	SEE Weightage	: 50%				
Teaching hours of Pedagogy:4	0	Exam Hours: 3 hours						
Credits: 03								
Name of the Course Coordin	ator: [t	eam designing the cou	rse]					
Course C	Outcome	es	Expected	Program				
			Bloom's Level	Outcomes				
CO1: To Understand and ap			L2	PO3				
algebraic structures (gr	-	_						
fields), cryptographic a	_	•						
	lware	Trojans, security						
vulnerabilities, and Phy	_							
(PUFs) in the context o		·	1.2	DO1 DO2				
CO2: To Apply cryptographi			L3	PO1,PO2				
checking methodologi identify and analyze		*						
Chip (SoC) designs and		-						
	nced	security assessment	L4	PO2				
frameworks, utilizing b		•	LT	102				
based methods, to ens		•						
trustworthiness, with		<u> </u>						
· · · · · · · · · · · · · · · · · · ·	trustworthiness, with emphasis on effective countermeasures against security threats in practical							
hardware environments		To the second of						
CO4: To Critically evaluate h	ardware	e designs and IP cores	L3	PO2,PO3				
by performing compre		_		,				
to detect, measure, and		•						
		1						

COURSE ARTICUALTION MATRIX									
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2		
CO1			3		1				
CO2	3	2				3	2		
CO3		3					3		
CO4		2	3				2		

side-channel vulnerabilities, and trust issues in third-

party components

PART-A							
Academic Year: 2024-25	Semester:	II		Scheme: P24			
Course Title: Static Timing Analysis							
Course Code: P24MECE253		CIE Marks:50	CIE	Weightage:50%			
Teaching hours/week (L:T:P): 3:0:0		SEE Marks: 100	SEE	E Weightage: 50%			
Teaching hours of Pedagogy:40		Exam Hours: 3 hours					
Credits: 03							

Prerequisite:

- 1. Embedded Systems.
- 2. Advanced Microcontroller.
- 3. ARM Processor.

Course learning Objectives:

CLO1: To understand the STA Environment and concepts.

CLO2: To know standard cell library with timing model and delay model.

CLO3: To study delay calculations and timing verification concepts of flip-flops.

UNIT -1 8 Hours

Introduction: Nanometer Designs, What is Static Timing Analysis? Why Static Timing Analysis? Design Flow, STA at Different Design Phases, Limitations of Static Timing Analysis, Power Considerations, Reliability Considerations.

STA Concepts: CMOS Logic, Modelling of CMOS Cells, Switching Waveform, Propagation Delay, Slew of a Waveform, Skew between Signals, Timing Arcs and Unateness, Min and Max Timing Paths, Clock Domains, Operating Conditions.

Self-Study Content: Understanding Timing Paths and Constraints

Text book Map: Chapter 1 and Chapter 2

Teaching Learning Process: Power point presentation, interactive session, chalk and talk.

UNIT 2: 8 Hours

Standard Cell Library: Pin Capacitance, Timing Modeling, Timing Models—Combinational Cells, Timing Models-Sequential Cells, State-Dependent Models, Interface Timing Model for a Black Box, Advanced Timing Modeling, Power Dissipation Modeling.

Self-Study Content: Simulating cells under different conditions to understand their timing behaviour.

Text book Map: Chapter 3

Teaching Learning Process: Power point presentation, interactive session, chalk and talk.

UNIT 3:

Interconnect Parasitics: RLC for Interconnect, Wireload Models, Representation of Extracted Parasitics, Representing Coupling Capacitances, Hierarchical Methodology, Reducing Parasitic for Critical Nets.

Delay Calculation: Overview, Cell Delay using Effective Capacitance, Interconnect Delay, Slew Merging, Different Slew Thresholds, Different Voltage Domains, Path Delay Calculation, Slack Calculation

Self-Study Content: Modelling of parasitic interconnection inductances on the GaAs-based VLSIC's.

Text book Map: Chapter 4 and Chapter 5

Teaching Learning Process: Individual Presentation on the assigned topic.

UNIT 4: 8 Hours

Configuring the STA Environment: What is the STA Environment? Specifying Clocks, Generated Clocks, Constraining Input Paths, Constraining Output Paths, Timing Path Groups, Modeling of External Attributes, Design Rule Checks, Virtual Clocks, Refining the Timing Analysis, Point-to-Point Specification, Path Segmentation.

Self-Study Content: STA Fundamentals

Text book Map: Chapter 7

Teaching Learning Process: Power point presentation, group discussion, chalk and talk,

UNIT 5:

8 Hours

Timing Verification: Setup Timing Check, Hold Timing Check, Multi cycle Paths, False Paths, Half- Cycle Paths, Removal Timing Check, Recovery Timing Check, Timing across Clock Domains, Examples, Half-cycle Path-Case1, Half-cycle Path-Case2, Fast to Slow Clock Domain.

Self-Study Content: Multiple Clocks.

Text book Map: Chapter 8

Teaching Learning Process: Individual Presentation on the assigned topic.

Course Outcomes: At the end of the course students should be able to:

CO1: To Understand and apply STA principles for digital circuits.

CO2: To analyse and optimize the static timing analysis for any given digital circuits

CO3: To Design a timing constraint for the given specification.

CO4: Generate the timing analysis report using EDA tool for different checks.

CO5: Analyse the generated report to identify critical issues and bottleneck for the STA violation.

Suggested Learning Resources:

Textbooks:

10	ALDUUKS.			
1.	Title	Author	Year &	Publisher
			Edition	
1	Static Timing Analysis for	J. Bhasker, R Chadha	2009	Springer
	Nanometer Designs:			Publication
	A Practical Approach			
2				
Re	ference Books:			
-				~ .

	10101100 2001101			
1.	Constraining Designs for	Sridhar Gangadharan,	2013	Springer
	Synthesis and Timing	Sanjay Churiwala		Publication
	Analysis–A Practical			
	Guide to Synopsis			
	Design Constraints(SDC)			
2.	Timing Analysis and	Naresh Maheshwari	2009	Springer
	Optimization of	and Sachin		Publication
	Sequential Circuits	Sapatnekar		
	_	_		

Web links and Video Lectures (e-resources)

- 1. https://www.youtube.com/watch?v=KlUn2GjNOfY&list=PLYdInKVfi0Ka5c6kraib5 qiCFhPWE9G6e
- 2. https://www.youtube.com/watch?v=yYR8BzysTmM&list=PLYdInKVfi0Ka5c6kraib 5qiCFhPWE9G6e&index=2

- 1. Flip Class
- 2. Seminar/poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

L3

PO5

PART-B						
Academic year:2024-25 Sea	Scheme:P24					
Course Title: Static Timing Analysis						
Course Code: P24MECE253	Course Code: P24MECE253 CIE Marks:50 CIE Weightage:50%					
Teaching hours/week (L:T:P): 3:0:	0 SEE Marks: 100	SEE Weightage	e: 50%			
Teaching hours of Pedagogy:40	Exam Hours: 3 hours					
Credits: 03						
Name of the Course Coordinator	: [team designing the cou	rse]				
Course Outco	omes	Expected	Program			
Course Outco	omes	Expected Bloom's Level	Program Outcomes			
Course Outco CO1: To Understand and apply S		_	0			
		Bloom's Level	Outcomes			
CO1: To Understand and apply S	TA principles for digital	Bloom's Level	Outcomes			
CO1: To Understand and apply Scircuits.	TA principles for digital the static timing analysis	Bloom's Level L2	Outcomes PO1			
CO1: To Understand and apply Scircuits. CO2: To analyse and optimize	TA principles for digital the static timing analysis	Bloom's Level L2	Outcomes PO1			
CO1: To Understand and apply Scircuits. CO2: To analyse and optimize for any given digital circuit	TA principles for digital the static timing analysis	Bloom's Level L2 L3	Outcomes PO1 PO2			

COURSE ARTICUALTION MATRIX									
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2		
CO1	3					3			
CO2		2					2		
CO3		3					3		
CO4			3		3				
CO5					2				

for different checks.

CO5: Analyse the generated report to identify critical issues

and bottleneck for the STA violation.

	DADE A	
A 1 : X/ 2024 25 G	PART-A	G 1 D24
	ester: II	Scheme: P24
Course Title: Embedded Linux Sy		
Course Code: P24MECE254	CIE Marks:50	CIE Weightage:50%
Teaching hours/week (L:T:P): 3:0:0	SEE Marks: 100	SEE Weightage: 50%
Teaching hours of Pedagogy:40	Exam Hours: 3 hours	
Credits: 03		
Prerequisite:		
Microcontroller/Micro Process	sor and Bus architectures	
Digital systems and Memory		
 Operating System 		
Course learning Objectives:		
CLO1: To understand the import	ance of Embedded Linu	x in embedded system design.
CLO2: To Gain the knowledge of l		
CLO3: To Analyse the memory red		
CLO4: To learn the embedded driv		
CLO5: To learn the porting application		
	IT -1	8 Hours
Introduction : History of Embed		
Versus Desktop Linux, Frequen	-	
Porting Roadmap. Getting Start		nbedded Linux, Linux Kernel
Architecture, User Space, Linux St	art-Up Sequence, GNU	
Cross Platform Toolchain		RBT Levels: L2, L3
Self-Study Content: Real life and e	•	
Text book Map: Text 1 : Chapter 1		
Teaching Learning Process: PPT/F		
	IT 2:	8 Hours
Board Support Package: Insertin		• •
Management, The PCI Sub system	, Timers, UART, Power	_
	. 1'	RBT Levels: L2, L3
Self-Study Content: General purpo		
Text book Map: Text 1 : Chapter 3.		
Teaching Learning Process: Semin		10.44
	IT 3:	8 Hours
Embedded Storage: Flash Map,	•	~ .
Sample MTD Driver for NOR		1 0
Character Devices, Mtdutils Pack	age, Embedded File Sys	
Tuning Kernel Memory.		RBT Levels: L2, L3
Self-Study Content: Disk devices		
Text book Map: Text 1: Chapter 4.		
Teaching Learning Process: Semin		0.11
	IT 4:	8 Hours
Embedded Drivers: Linux Ser	· · · · · · · · · · · · · · · · · · ·	stem on Linux, USB Gadgets,
Watchdog Timer, Kernel Modules.		DDT11 12 12
		RBT Levels: L2, L3
Self-Study Content: Ethernet Drive		
Text book Map: Text 1: Chapter 5	,	

Teaching Learning Process: Group discussion with Case study/ Flipped Classroom

UNIT 5:

Porting Applications: Architectural Comparison, Application Porting Roadmap,

Programming with Pthreads, Operating System Porting Layer (OSPL), Kernel API Driver.

RBT Levels: L2, L3

Self-Study Content: Embedded boot loaders

Text book Map: Text 2: Chapter 6.

Teaching Learning Process: PPT/ Chalk and Talk/ Seminar

Course Outcomes: At the end of the course students should be able to:

CO1: Understand the embedded Linux development environment

CO2: Understand and create Linux BSP for a hardware platform.

CO3: Understand the Linux model for embedded storage and write driver sand applications

CO4: Understand various embedded Linux drivers such as serial, I2C, and so on.

CO5: Port applications to embedded Linux from a traditional RTOS.

Suggested Learning Resources:

Textbooks:

1.	Title	Author	Year & Edition	Publisher
1	"Embedded Linux	P. Raghavan,	2006	Auerbach Publications,
	System Design And	AmolLad,		Taylor& Francis Group,
	Development"	Sriram		_
	_	Neelakandan		
2	"Building Embedded	Karim		O'Re i
	Linux Systems"	Yaghmour, Jon		llypublications,2ndedition"
		Masters, Gilad		
		Ben Yossef,		
		and Philippe		
		Gerum		
Re	ference Books:			
1.				
2.				

Web links and Video Lectures (e-resources)

1. https://www.youtube.com/watch?v=9vsu67uMcko

- 1. Flip Class
- 2. Seminar/poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

L2

L1

PO1

PO2

		PART-B		
Academic year:2024-25	Scheme:P24			
Course Title: Embedded Linu	ment Processing			
Course Code: P24MECE254		CIE Marks:50	CIE Weightage	:50%
Teaching hours/week (L:T:P):	3:0:0	SEE Marks: 100	SEE Weightage	: 50%
Teaching hours of Pedagogy:4	0	Exam Hours: 3 hours		
Credits: 03				
Name of the Course Coordin	ator: [t	team designing the cou	rse]	
Course Outcomes				
Course C	Outcom	es	Expected	Program
Course C	Outcom	es	Expected Bloom's Level	Program Outcomes
Course C CO1: To understand the Embe			-	0
			Bloom's Level	Outcomes
CO1: To understand the Embe	edded L	inux System principles	Bloom's Level	Outcomes
CO1: To understand the Embe and its architecture	edded L	inux System principles	Bloom's Level L1	Outcomes PO1

COURSE ARTICUALTION MATRIX									
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2		
CO1	3					3			
CO2	3					3			
CO3		2					2		
CO4	2					2			
CO5		2					2		

Linux Kernel and drivers

packages and porting of applications

modules

CO4: To illustrate the bus architectures, drivers and Kernel

CO5: To comprehend the Embedded Linux system

	PART-A	
Academic Year: 2024-25	Semester: II	Scheme: P24
Course Title: Reconfigurable (Computing	
Course Code: P24MECE261	CIE Marks:50	CIE Weightage:50%
Teaching hours/week (L:T:P):	SEE Marks: 100	SEE Weightage: 50%
Teaching hours of Pedagogy:40	Exam Hours: 3 hour	
Credits: 03	-	
Prerequisite:		
FPGA, Verilog HDL, Signal Pro	ocessing, Image processing	
Course learning Objectives:		
CLO1: To learn the various Rec	configurable systems.	
CLO2: To study the different La	•	
CLO3: To understand the Imple		
CLO4: To learn Partial Reconfi		
CLO5: To understand the Signa		
	UNIT -1	8 Hours
Introduction: History, Reconfig	gurable vs. Processor based	
Reconfigurable Logic Devices		~ · ·
Reconfigurable Arrays.		
•	v stem: Parallel Processing of	on Reconfigurable Computers, A
survey of Reconfigurable Comp		8
Self-Study Content: Programs o	Ţ į	
Text book Map: Text 1: 1.1,1.2,		
Teaching Learning Process: Flip		
	UNIT 2:	8 Hours
Languages and Compilation:		- HDL, High Level Compilation
Low level Design flow, Debugg		
Self-Study Content: Algorithm		
Text book Map: Text 1: 4.1,4.2.	<u> </u>	
Teaching Learning Process: Tea		
Teaching Learning 1100055. 100	UNIT 3:	8 Hours
Implementation: Integration, F		
High Level Synthesis for Reco		•
Algorithms.	inigulable Devices. 1410de	ing, remperar randoming
Self-Study Content: Developing	a different design flow to s	etudy FPGA
Text book Map: Text 2: 3.1,3.2	, <u> </u>	nudy 11 071.
Teaching Learning Process: Pos		
Teaching Learning 1 focess. 1 os	UNIT 4:	8 Hours
Partial Pacanfiguration Design		Design, Bit stream Manipulation
<u> </u>	9	s Design Flow, Creating Partial
	•	s Design Flow, Creating Fartian sel-C Designs, Platform Design.
Recomingulable Designs, Faltial	Recomingulation using fiall	ser-c Designs, i lanolin Design.
Salf Study Contant:		
Self-Study Content:	727 1757677	
Text book Map: Text 2: 7.1.7.2,		
•	se study	
Text book Map: Text 2: 7.1.7.2, Teaching Learning Process: Cas	se study UNIT 5:	8 Hours
Text book Map: Text 2: 7.1.7.2,	se study UNIT 5: s: Reconfigurable computin	g for DSP, DSP application

System on a Programmable Chip: Introduction to SoPC, Adaptive Multiprocessing on

P. E. S. College of Engineering, Mandya

Local Neighbourhood functions, Convolution.

Chip.

Self-Study Content: i) Morphology

ii) Feature Extraction iii) Image Matching

Text book Map: Text 1: 5.2.1, 5.3,5.4.1, 5.4.2, 6.1, 6.2, 6.3

Text 2: 8.1,8.2,8.3

Teaching Learning Process: Seminar

Course Outcomes: At the end of the course students should be able to:

CO1: Understand the fundamental principles and practices in reconfigurable architecture.

CO2: Apply simulation and synthesize of reconfigurable computing architectures.

CO3: Analyze the FPGA design principles, and logic synthesis.

CO4: Integrate hardware and software technologies for reconfiguration computing focusing on partial reconfiguration design.

CO5: Design digital systems for a variety of applications on signal processing and system on chip configurations.

Suggested Learning Resources:

Textbooks:

1.	Title	Author	Year & Edition	Publisher
1	Reconfigurable Computing:	Maya B.	2005	Springer
	Accelerating Computation	Gokhale and	ISBN:978-0-387-	
	with Field-Programmable	Paul S. Graham	26105-82005	
	Gate Arrays			
2	Introduction to	Christophe	ISBN:978-1-	Kluwer Academic
	Reconfigurable Computing:	Bobda	4020-6088-52007	
	Architectures, Algorithms			
	and Applications.			

Reference Books:

	rerence Booms.			
1.	Practical FPGA	D. Pellerin and	2005	Prentice-Hall
	Programming in C	S.		
		Thibault		
2.	FPGA Based System	W.Wolf	2005	Prentice-Hall
	Design			
3.	Rapid System	R.Cofer and	2005	
	Prototyping with	B.Harding		
	FPGAs: Accelerating the	Newnes		
	Design Process			

Web links and Video Lectures (e-resources)

- 1. https://www.youtube.com/watch?v=q2ZbxPFtowM
- 2. https://youtu.be/5_H_j72Ftq8?si=kqiNA07iUBwKRtNP
- 3. https://nptel.ac.in/courses/117108040

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

PART-B							
Academic year:2024-25 Semes		ster: II	Scheme:P24				
Course Title: Reconfigurab	e Compi	uting					
Course Code: P24MECE26	[CIE Marks:50	CIE Weightage:50%				
Teaching hours/week (L:T:P): 3:0:0		SEE Marks: 100	SEE Weightage: 50%				
Teaching hours of Pedagogy	:40	Exam Hours: 3 hours					
Credits: 03							

Name of the Course Coordinator: [team designing the course]

Course Outcomes	Expected Bloom's Level	Program Outcomes
CO1: Understand the fundamental principles and practices in reconfigurable architecture	L2	PO1
CO2: Analyze the simulation and synthesize of reconfigurable computing architectures	L3	PO2
CO3: Analyze the FPGA design principles, and logic synthesis.	L2,L3	PO2,PO3
CO4: Integrate hardware and software technologies for reconfiguration computing focusing on partial reconfiguration design.	L4	PO3
CO5: Design digital systems for a variety of applications on signal processing and system on chip configurations.	L6	PO5

COURSE ARTICUALTION MATRIX									
PO1 PO2 PO3 PO4 PO5 PSO1 PSO2									
CO1	2					2			
CO2	3					3			
CO3 3							3		
CO4	CO4 2								
CO5					2				

PART-A						
Academic Year: 2024-25	Semester: II	Scheme: P24				
Course Title: Long Term Reliability	of VLSI Systems					
Course Code: P24MECE262	CIE Marks:50	CIE Weightage:50%				
Teaching hours/week (L:T:P): 3:0:0	SEE Marks: 100	SEE Weightage: 50%				
Teaching hours of Pedagogy:40 Exam Hours: 3 hours						

Credits: 03 Prerequisite:

- 1. Design and Analysis of CMOS Circuits
- 2. Knowledge on Device-level Modelling
- 3. Familiarity with Circuit Simulation Tools
- 4. Knowledge on Fabrication Technology

Course learning Objectives:

- CLO1: To Understand the Various Concepts Related to Electro migration Reliability.
- CLO2: To study the Fast EM Stress Evolution Analysis.
- CLO3: To study the EM Assessment for Power Grid Networks.
- CLO4: To understand the Transistor Aging Effects and Reliability.
- CLO5: To learn the Aging Effects in Sequential Elements.

UNIT-1

8 Hours

Electro migration Reliability: Why Electro migration Reliability?, Why system level EM Reliability Management? Physics- based EM Modelling, Electro migration Fundamentals, Stress based EM Modelling and stress diffusion equations, Modelling for transient EM effects and Initial stress conditions, post voiding stress and void volume evolution, compact physics based EM model for a single wire, other relevant EM models and analysis methods.

Self-Study Content: Study on recent developments in EM topics

Text book Map: 1.1,1.2,2.1,2.2,2.3,2.4,2.5,2.6,2.9

Teaching Learning Process: One minute paper, Quiz

UNIT 2:

8 Hours

Fast EM Stress Evolution Analysis: Introduction, The LTI ordinary differential equations for EM stress evolution, The presented Krylov fast EM stress analysis, Numerical results and discussions.

Self-Study Content: Understand Krylov subspace method

Text book Map: 3.1,3.2,3.3,3.4

Teaching Learning Process: Presentations

UNIT 3:

8 Hours

EM Assessment for Power Grid Networks: New power grid reliability analysis method, cross-layout temperature and thermal stress characterization, impact of across-layout temperature and thermal stress on EM.

Self-Study Content: Implement full chip thermal variation aware EM assessment method on a 2.4ghz Linux server using C++. Test the same using 32nm standard cell IC design.

Text book Map:7.2,7.4,7.5

Teaching Learning Process: Quiz, Presentation

UNIT 4:

8 Hours

Transistor Aging Effects and Reliability: Introduction, Transistor reliability in advanced technology nodes, Transistor Aging, BTI-Bias Temperature Instability, HCI-Hot Carrier Injection, Coupling models for BTI and HCI degradations, RTN-Random Telegraph Noise, TDDB-Time Dependent Dielectric Breakdown.

Self-Study Content: Understand various modelling and mitigation techniques for transistor aging at various levels of abstraction.

Text book Map: 13.1,13.2

Teaching Learning Process: Quiz, Presentation

8 Hours

Aging Effects in Sequential Elements: Introduction, Background: flip flop timing analysis, process variation model, voltage droop model, Robustness analysis, reliability-aware flip-flop design.

Self-Study Content: Perform layout simulation of C2MOS Flip-flop using Cadence Virtuoso.

Text book Map: 16.1,16.2,16.3,16.4

Teaching Learning Process: Quiz ,Presentation

Course Outcomes: At the end of the course students should be able to:

- CO1: Comprehend the recent research in the area of interconnect and device reliability.
- CO2: Understand the physics-based EM modelling.
- CO3: Understand the underlying phenomena of BTI, HCI, TDDB leading to device
- CO4: Relate to considerations at the circuit-level with both combinational and sequentialL4elements

Suggested Learning Resources:

Textbooks:

1	Title	Author	Year & Edition	Publisher
1	Long- Term Reliability of Nanometer VLSI Systems	SheldonX.D.Tan, Mehdi Baradaran Tahoori, Taeyoung Kim, SamanKia mehr, Zeyu	1stEdition,2019IS BN:978-3-030- 26171-9	Springer International Publishing
2		, <i>J</i> #		

Reference Books:

1	Reliability Wearout	Alvin Wayne Strong,	Inc.2009Print	Wiley, Copyright
	Mechanisms in Advanced	Rolf-Peter	ISBN:978047	© the Institute of
	CMOS Technologies	Vollertsen, Timothy	1731726	Electrical and
		D. Sullivan, Ernest		Electronics
		Y. Wu, Giuseppe La		Engineers
		Rosa, Jordi Sune		
2	Hot- carrier Reliability of	Yusuf Leblebici, SM	1stEdition,	Springer Science
	MOS VLSI Circuits	Kang	1993	& Business Media
3	Fundamentals of	Matthias Thiele, Jens	2018	Springer
	Electromigration Aware	Lienig Springer		International
	Integrated Circuit Design	International		Publishing
		Publishing 2018		

Web links and Video Lectures (e-resources)

1. nptel.ac.in

- 1. Flip Class
- 2. Seminar/poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

PART-B						
Academic year:2024-25 Semester: II Scheme:P24						
Course Title: Long Term Reliability of VLSI Systems						
Course Code: P24MECE262 CIE Marks:50 CIE Weightage:50%						
Teaching hours/week (L:T:P)	SEE Weightage	e: 50%				
Teaching hours of Pedagogy:						
Credits: 03						
Name of the Course Coordi	nator: [t	eam designing the cou	ırse]			
Course	Expected	Program				
	Bloom's Level	Outcomes				
CO1: Comprehend the recent	recearch	in the area of	1.2	PO1		

Course Outcomes	Expected Bloom's Level	Program Outcomes
CO1: Comprehend the recent research in the area of	L2	PO1
interconnect and device reliability.		
CO2: Understand the physics-based EM modelling.	L2	PO2
CO3: Understand the underlying phenomena of BTI, HCI,	L2	PO2
TDDB leading to device		
CO4: Relate to considerations at the circuit-level with both	L4	PO3
combinational and sequential L4 elements		

COURSE ARTICUALTION MATRIX							
PO1 PO2 PO3 PO4 PO5 PSO1 PSO2							
CO1	3					3	
CO2	2					2	
CO3 2 2							2
CO4			1				

Semester:	II	G 1 DO 4		
	11	Scheme: P24		
SI Design	n			
	CIE Marks:50	CIE Weightage:50%		
Teaching hours/week (L:T:P): 3:0:0		SEE Weightage: 50%		
10	Exam Hours: 3 hours			
1. Digital Electronic Circuits.				
2. Digital C				
3. Circuit Analysis				
	0 Digital E Digital C	3:0:0 SEE Marks: 100 0 Exam Hours: 3 hours Digital Electronic Circuits. Digital CMOS VLSI		

Course learning Objectives:

CLO1: Apply State-of-the art approaches to power estimation and reduction.

CLO2: Describe various power reduction and the power estimation methods.

CLO3: Understand power dissipation at all layers of design hierarchy from technology, circuit, logic, architecture and system.

UNIT -1

Introduction: Need for low power VLSI chips, charging and discharging capacitance, short circuit current in CMOS leakage current, static current, basic principles of low power design, low power figure of merits. Simulation power analysis: SPICE circuit simulation, Monte Carlo simulation.

Self-Study Content: Discrete Transistor Modeling and Analysis, Gate-Level Logic Simulation, Architecture-Level Analysis, and Data Correlation Analysis in DSP Systems using simulation tools and mathematical methods.

Text book Map: 1.1 to 1.7, 2.1, 2.6 (Text 1)

Teaching Learning Process: PPT/chalk and talk, Seminar.

UNIT 2: 8 Hours

Circuit: Transistor and gate sizing, equivalent pin ordering, network restructuring and reorganization, special latches and flip flops, low power digital cell library, adjustable device threshold voltage.

Self-Study Content: Special latches and flip-flops, low-power digital cell library.

Text book Map: **4.1 to 4.6 (Text 1)**

Teaching Learning Process: PPT/chalk and talk/simulation.

UNIT 3: 8 Hours

Logic: Gate reorganization, signal gating, logic encoding, state machine encoding, precomputation logic.

Low power Clock Distribution: Power dissipation in clock distribution, single driver versus distributed buffers.

Self-Study Content: Gate reorganization, signal gating, logic and state machine encoding, and pre-computation logic.

Text book Map: **5.1 to 5.5 (Text 1), 5.1 to 5.2 (Text 2)**

Teaching Learning Process: PPT/chalk and talk /Individual Role play/Team Demonstration.

UNIT 4: 8 Hours

Low power Architecture and Systems: Power and performance management, switching activity reduction, flow graph transformation.

Low power memory design: Introduction, sources and reductions of power dissipation in memory subsystem.

Self-Study Content: Sources of Power Dissipation in DRAM and SRAM, Low Power DRAM Circuits and Low Power SRAM Circuits to enhance energy efficiency in memory systems.

Text book Map: 7.1 to 7.4 (Text 1), 8.1 to 8.2(Text 2).

Teaching Learning Process: PPT/chalk and talk / Individual Role play/Team Demonstration.

UNIT 5: 8 Hours

Algorithm and Architectural Level Methodologies: Introduction, design flow, Algorithmic level analysis and optimization, Architectural level estimation and synthesis.

Advanced Techniques: Adiabatic computation, Asynchronous circuits.

Self-Study Content: Pass Transistor Logic Synthesis, Basics of Pass Transistor Logic, Boolean Decision Diagram and Pass Transistor Logic, Pass Transistor Logic Synthesis System.

Text book Map: 11.1 to 11.5 (Text 2), 8.1, 8.3 (Text 1).

Teaching Learning Process: PPT/chalk and talk/Flip class/ Case study.

Course Outcomes: At the end of the course students should be able to:

CO1: Identify and illustrate the sources of power dissipation, also formulate and compute the dissipated power at different abstract levels of the circuits.

CO2: Analyse the given circuits for the impact of transistor sizing, gate sizing, equivalent pin ordering, network restructuring, and special latches and flip-flops in power consumption reduction.

CO3: Apply circuit-level and logic-level design strategies such as transistor sizing, gate sizing, signal gating, logic encoding, and low-power cell design to minimize power consumption.

CO4: Design and optimize low-power digital cells using techniques such as adjustable device threshold voltage, gate reorganization, signal gating, and logic encoding.

CO5: Apply SPICE circuit simulation and Monte Carlo simulation to analyse and optimize power consumption in VLSI circuits.

Suggested Learning Resources:

	86 8			
Te	xtbooks:			
1.	Title	Author	Year & Edition	Publisher
1	Practical Low Power	Gary K.Yeap	1998	ISBN 978-1-4613-
	Digital VLSI Design			7778-8, ISBN 978-1-
				4615-6065-4,
				(eBook) DOI
				10.1007/978-1-4615-
				6065-4.
2	Low Power Design	Jan M. Rabaey	2010	ISBN 978-1-46 13-
	Methodologies	University California		5975-3, ISBN 978-1-
		and Massoud		4615-2307-9,
		Pedram University		(eBook) DOI
		of Southem		10.1007/978-1-4615-
		Califomia		2307-9.
Re	ference Books:			
1.	Low-Power CMOS	Kaushik Roy, Sharat	2000	
	VLSI Circuit Design	Prasad.		
2.	Low power digital	A.P.Chandrasekaranand	l, 1995	
	CMOS design.	R.W.Broadersen		
3.	Low power VLSI	A Bellamour and	1995	
	CMOS circuit design.	MIElmasri		
TX 7.	oh links and Vidaa I aat	(DODMINGDOM A)		

Web links and Video Lectures (e-resources)

- 1. https://archive.nptel.ac.in/courses/106/105/106105034/
- 2.https://www.youtube.com/watch?v=TFOO1JAll2Y
- 3.https://www.youtube.com/watch?v=ORtlxpW_LMU

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

		PART-B		
Academic year:2024-25	Academic year:2024-25 Semester: II		Scheme:P24	
Course Title: Low Power VLS	gn			
Course Code: P24MECE263 CIE Marks:50			CIE Weightage	:50%
Teaching hours/week (L:T:P): 3:0:0 SEE Marks: 100		SEE Weightage	: 50%	
Teaching hours of Pedagogy:4	0	Exam Hours: 3 hours		
Credits: 03				
Name of the Course Coordin	ator: [t	eam designing the cou	rse]	
Course Outcomes			Expected	Program
			Bloom's Level	Outcomes
CO1: Illustrate and compa			L3	PO1
dissipation, also formulate		1		
power at different abstract leve				
CO2: Analyse the given circu		±	L4	PO1, PO4
sizing, gate sizing, equival		O 1		
restructuring, and special late				
consumption reduction. Preser		ninar on prevalent low		
power practices in the industry				
CO3: Apply circuit-level and	_	0	L2	PO1
such as transistor sizing, gat				
	encoding, and low-power cell design to minimize power			
consumption.				
CO4: Design and optimize 1	-	_	L6	PO1
techniques such as adjustable device threshold voltage, gate				

COURSE ARTICUALTION MATRIX							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2
CO1	3					3	
CO2	2			1		2	
CO3	2					2	
CO4	2					2	
CO5					2		

L2

reorganization, signal gating, and logic encoding.

VLSI circuits and submit a report.

CO5: Apply SPICE circuit simulation and Monte Carlo

simulation to analyse and optimize power consumption in

PO6

PART-A						
Academic Year: 2024-25	Semester: II		Scheme: P24			
Course Title: RISC V						
Course Code: P24MECE264		CIE Marks:50	CIE Weightage:50%			
Teaching hours/week (L:T:P): 3:0:0		SEE Marks: 100	SEE Weightage: 50%			
Teaching hours of Pedagogy:40	•	Exam Hours: 3 hours				

Credits: **03** Prerequisite:

Digital Logic Design, Microcontroller, Microprocessor

Course learning Objectives:

CLO1: To study the basics of RISC-V architecture. CLO2: To understand the RISC-V Implementation.

CLO3: To create the data path in RISC-V.

UNIT -1 8 Hours

Instructions: Introduction ,Operations of the Computer, Operands of the Computer Hardware, Signed and Unsigned Numbers, Representing Instructions in the Computer, Logical Operations, Instructions for Making Decisions, Supporting Procedures in Computer Hardware, Communicating with People, RISC-V Addressing for Wide Immediate and Addresses.

Self-Study Content: Real stuff: MIPS Instructions.

Text book Map: Text1

Teaching Learning Process: Chalk and Board /Seminar

UNIT 2: 8 Hours

Instructions continued: Parallelism and Instructions: Synchronization, Translating and Starting a Program, AC Sort Example to Put it All Together, Real Stuff: The Rest of the RISC-V Instruction Set.

Arithmetic for Computers: Addition and Subtraction, Multiplication, Multiply in RISC-V, Division, Divide in RISC-V, Floating-Point Instructions in RISC-V.

Self-Study Content: Real stuff: Streaming SIMD Extensions and Advanced Vector.

Text book Map: Text1

Teaching Learning Process: Case study

UNIT 3: 8 Hours

The Processor: A Basic RISC-V Implementation, An Overview of the Implementation, Logic Design Conventions, Building a Data path, A Simple Implementation Scheme, Overview of Pipelining.

Self-Study Content: Exceptions

Text book Map: Text1

Teaching Learning Process: Report writing

UNIT 4: 8 Hours

The Processor continued: Pipelined Data path and Control, Data Hazards: Forwarding versus Stalling, Control Hazards. How Exceptions are Handled in the RISC-V Architecture, Instruction-Level Parallelism and Matrix Multiply.

Large and Fast: Exploiting Memory Hierarchy, Memory Technologies.

Self-Study Content: An Introduction to Digital Design Using a Hardware Design Language to Describe and Model a Pipeline and More Pipelining Illustrations.

Text book Map: Text1

Teaching Learning Process: Power point Presentation

UNIT 5: 8 Hours

Large and Fast: Exploiting Memory Hierarchy continued: The Basics of Caches, Virtual Machines, Virtual Memory.

Self-Study Content: Going Faster: Cache Blocking and Matrix Multiply.

Text book Map: Text1

Teaching Learning Process: Seminars

Course Outcomes: At the end of the course students should be able to:

- CO1: Describe RISC-V instructions and the language of the computer.
- CO2: Analyse Data Hazards and how Exceptions are handled in the RISC-V Architecture
- CO3: Design using the knowledge of memory mapping techniques..
- CO4: Construct a data path and implementation using floating-point arithmetic.

Suggested Learning Resources:

Textbooks:

1 0210	0001101			
1.	Title	Author	Year &	Publisher
			Edition	
1	Computer Organization	David A.	5 th Edition	Elsevier. Morgan
	and Design: The	Patterson, John L.		Kaufman
	Hardware/Software	Hennessy		
	Interface: RISC-V Edition			
2				
- a				

Reference Books:

1.	Digital Design and	David Money	2021&	Morgan Kaufman
	Computer Architecture,	Harris, Sarah L.	RISC-V	
		Harris	Edition	
2.	Guide to Computer	Bernard	2023	Springer
	Processor Architecture: A	Goossens		
	RISC-V approach, with			
	High-Level Synthesis			

Web links and Video Lectures (e-resources)

- 1.<u>https://www.youtube.com/watch?v=TVvMPh_P2is&</u>list=PLgzAvj2cYr3qGvecT_PSnKzl5 SxECZmI3&index=2,
- 2.https://www.youtube.com/watch?v=BVvDHhG0RoA&list=PL5AmAh9QoSK7Fwk9vOJu-3VqBng_HjGFc

- 1. Flip Class
- 2. Seminar/poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

PART-B						
Academic year:2024-25	Semeste	er: II	Scheme:P24			
Course Title: RISC V						
Course Code: P24MECE26 4	ļ	CIE Marks:50	CIE Weightage:50%			
Teaching hours/week (L:T:P): 3:0:0		SEE Marks: 100	SEE Weightage: 50%			
Teaching hours of Pedagogy:40		Exam Hours: 3 hour	rs			
Credits: 03						
Name of the Course Coordinator: [team designing the course]						

Course Outcomes	Expected	Program
	Bloom's	Outcomes
	Level	
CO1: Describe RISC-V instructions and the language of the	L2	PO1
computer.		
CO2: Analyse Data Hazards and how Exceptions are	L3	PO2
handled in the RISC-V Architecture.		
CO3: Design using the knowledge of memory mapping	L3	PO3
techniques.		
CO4: Construct a data path and implementation using	L3	PO4
floating-point arithmetic.		

COURSE ARTICUALTION MATRIX							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2
CO1	3					3	
CO2		3					3
CO3			1				
CO4				1			

PART-A					
		ster: II	Scheme: P24		
Course	Title: VLSI Design and Emb	oedded Systems Lab			
Course	Code: P24MECEL27	CIE Marks:50	CIE Weightage:50%		
Teachi	ng hours/week (L:T:P): 0:1:1	SEE Marks: 100	SEE Weightage: 50%		
Teachi	ng hours of Pedagogy:40	Exam Hours: 3 hours			
Credits	: 02				
Prerequ	iisite:				
	, Microcontroller.				
	learning Objectives:				
	To design and simulate digita	l circuits: standard cells,	ALUs, SRAM cells, and		
	multiplication units.				
	To develop embedded code for				
	To apply programming skills				
	circuit design, embedded syste		rs		
Sl.No.		Experiments			
		Part-A			
1	Experience simulation and al	VLSI Design	a standard call		
2	Functional simulation and ch		i standard cen.		
3	Develop an ALU macro for		o:f: a a 4; a m		
4	Design and develop an SRA				
5	Develop a matrix multiplicat				
6	Develop analog differentiated Develop an oscillator for given		tion of requirements.		
0	Develop all oscillator for give	Part-B			
	E	mbedded Systems			
1	Write an Assembly language		e sum and display the result		
	for the addition of first ten n				
2			Vorld" message using UART.		
3	Develop a Embedded C prog		3 3		
	i. To operate a buzz				
	ii. To control steppe	er motor using CortexM3	3		
4	Develop a Embedded C prog				
	module of ARM controller)	and vary its duty cycle.			
5	Develop a Embedded C prog	gram for interfacing a Da	AC and generate (Triangular		
	and Square) waveforms.				
6	Write an Assembly language	<u> </u>			
	Outcomes: At the end of th				
		cuits for given analog	and digital requirements or		
operation					
	erify and evaluate the operation				
	Design code for the given spec				
CO4: T	est and Analyse the code or ci	ircuits for functional and	performance requirements.		

PO1, PO5,

PO6

L4

	PART-B				
Semester: II		Scheme:P24			
Course Title: VLSI Design and Embedded Systems Lab					
Course Code: P24MECEL27 CIE Marks:50			:50%		
0:1:1	SEE Marks: 100	SEE Weightage	e: 50%		
Teaching hours of Pedagogy:40 Exam Hours: 3 hours					
ator: [t	eam designing the cou	rse]			
Outcome	es	Expected	Program		
CO1: Develop analog or digital or mixed mode circuits for					
given analog or/and digital requirements.					
CO2: Verify and evaluate the operation of a circuit or code.					
operatio	on of a circuit or code.	L5	PO1		
-	on of a circuit or code. given specifications:	L5 L6	PO1 PO1,PO3		
	0:1:1 0 ator: [t	Semester: II d Embedded Systems Lab CIE Marks:50 0:1:1 SEE Marks: 100 Exam Hours: 3 hours ator: [team designing the council or mixed mode circuits for uirements.	Semester: II Scheme:P24 d Embedded Systems Lab CIE Marks:50 CIE Weightage 0:1:1 SEE Marks: 100 SEE Weightage 0 Exam Hours: 3 hours ator: [team designing the course] outcomes Expected Bloom's Level al or mixed mode circuits for uirements.		

COURSE ARTICUALTION MATRIX							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2
CO1	3					3	
CO2	3					3	
CO3	2		2			2	
CO4	2				2	2	

CO4: Test and Analyse the code or circuit for functional

the outcome of testing and analysis.

and performance requirements. Write and submit a report on